15 research outputs found
Distribution and Excretion of BisGMA in Guinea Pigs
Bisphenol-A-glycidyldimethacrylate (BisGMA) is used in many resin-based dental materials. It was shown in vitro that BisGMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of [14C]BisGMA applied via gastric and intravenous administration (at dose levels well above those encountered in dental care) were examined in vivo in guinea pigs to test the hypothesis that BisGMA reaches cytotoxic levels in mammalian tissues. [14C]BisGMA was taken up rapidly from the stomach and intestine after gastric administration and was widely distributed in the body following administration by each route. Most [14C] was excreted within one day as 14CO2. The peak equivalent BisGMA levels in guinea pig tissues examined were at least 1000-fold less than known toxic levels. The peak urine level in guinea pigs that received well in excess of the body-weightadjusted dose expected in humans was also below known toxic levels. The study therefore did not support the hypothesis
Distribution and Excretion of TEGDMA in Guinea Pigs and Mice
The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis
Cytokine release from human leukocytes exposed to silorane- and methacrylate-based dental materials
Expression of CYP450-2E1 and formation of 2,3-epoxymethacrylic acid (2,3-EMA) in human oral cells exposed to dental materials.
Objectives. Methacrylate-based (co)monomers released from dental composites can be, metabolized in vivo to methacrylic acid (MA). MA can be further oxidized to the toxic 2,3-epoxymethacrylic acid (2,3-EMA) by cytochrome P450 (CYP450) enzymes. The subform CYP450-2E1, can metabolize xenobiotics with low-molecular weight to epoxides. Oral cells are highly exposed to (co) monomers released from composites. Therefore in this study the, expression of CYP450-2E1 in human oral (and other) cells was investigated as well as the formation of 2,3-EMA in cells exposed to MA. Methods. Following human oral cells were used: human gingiva fibroblasts (HGF), human pulp fibroblasts (HPF), and human tumor buccal keratinocytes (SqCC/Y1). As negative control V79 cells without CYP450-2E1 expression were used. As positive controls V79 cells with CYP450-2E1 expression (V79-CYP450-2E1) and pooled human liver microsomes were used. The expression of CYP450-2E1 in cells was analyzed with the real-time polymerase chain reaction (RT-PCR). 2,3-EMA was quantified by the use of the method of gas chromatography/mass spectrometry (GC/MS). Results. The highest expression of CYP450-2E1 was found in human liver microsomes, followed by SqCC/Y1 cells, V79-CYP450-2E1 cells, HGF, and HPF. The highest amount of 2,3-EMA (mu mol/L; mean +/- SEM, n = 3) was found in human liver microsomes (5.0 +/- 1.0), followed by SqCC/Y1 cells (2.5 +/- 0.8), V79-CYP450-2E1 cells (1.5 +/- 0.6), HPF (0.3 +/- 0.3), and HGF (0.2 +/- 0.2). Significance. It is concluded that the formation of the toxic epoxide 2,3-EMA, as intermediate in the metabolism of dental materials, can occur also in human oral cells which can express the CYP450-2E1 enzyme system
Effects of Lewisite on cell membrane integrity and energy metabolism in human keratinocytes and SCL II cells
In vitro embryotoxicity assessment with dental restorative materials
Objectives. Resin (co)monomers; may be released from restorative dental materials and can diffuse into the tooth pulp or the gingiva, and can reach the saliva and the circulating blood. Genotoxic potential of some dental composite components has been clearly documented. The genotoxic effects of xenobiotics can represent a possible step in tumor initiation and/or embryotoxicity/teratogenesis. A modified fluorescent mouse embryonic stem cell test (R.E.Tox((R))) was used to test the embryotoxic potential of following dental restorative materials: Bisphenol A glycidylmethacrylate (BisGMA), urethanedimethacrylate (UDMA), hydroxyethylmethacrylate (HEMA), and triethyleneglycoldimethacrylate (TEGDMA), as wet( as some of their metabolic intermediates 2,3-epoxy-2-methyl-propionicacid-methylester (EMPME), methacrylic acid (MA), and 2,3-epoxy-2-methylpropionic acid (EMPA). Methods. Mouse embryonic stem (ES) cells stably transfected with a vector containing the gene for the green fluorescent protein under control of the cardiac alpha-myosin heavy chain promoter were differentiated in the presence of various concentrations of the test compounds for 12 days. Fluorescence was measured using the TECAN Safire((R)) and values were expressed as percent of control values. To distinguish between cytotoxic and embryotoxic effects, all compounds were tested in a standard MTT assay. Results. HEMA, TEGDMA and EMPME did not influence the differentiation process of ES cells towards cardiac myocytes. No cytotoxic effects were observed at any of the concentration levels tested. Exposure to BisGMA resulted in a 50% decrease in cell Embryotoxic effects were also present at 10(-6) and 10(-7) M (p < 0.05). EMPA induced a decrease in ES cell differentiation at 10(-5) M (p < 0.01) without cytotoxic effects. No embryotoxic effects were induced at tower concentrations. Exposure to UDMA resulted in a slight decrease of cell differentiation at 10(-5) M (p < 0.05). Exposure of cells to MA resulted in an increase of cardiac differentiation up to 150% (p < 0.05) at 10(-5) M without cytotoxic effects. Conclusions. BisGMA induced a significant high embryotoxic/teratogenic effect over a large range of concentration. Therefore attention should be focused on this dental monomer, which should be investigated further by in vivo experiments. (C) 2004 Elsevier Ltd. All rights reserved
