3 research outputs found

    Vibrational Instability of Metal-Poor Low-Mass Main-Sequence Stars

    Full text link
    We find that low-degree low-order g-modes become unstable in metal-poor low-mass stars due to the ε\varepsilon-mechanism of the pp-chain. Since the outer convection zone of these stars is limited only to the very outer layers, the uncertainty in the treatment of convection does not affect the result significantly. The decrease in metallicity leads to decrease in opacity and hence increase in luminosity of a star. This makes the star compact and results in decrease in the density contrast, which is favorable to the ε\varepsilon-mechanism instability. We find also instability for high order g-modes of metal-poor low-mass stars by the convective blocking mechanism. Since the effective temperature and the luminosity of metal-poor stars are significantly higher than those of Pop I stars, the stars showing γ\gamma Dor-type pulsation are substantially less massive than in the case of Pop I stars. We demonstrate that those modes are unstable for about 1 M⊙1\,M_\odot stars in the metal-poor case.Comment: 4 pages, 4 figures, To be published in Astrophysics and Space Science Proceedings series (ASSP). Proceedings of the "20th Stellar Pulsation Conference Series: Impact of new instrumentation and new insights in stellar pulsations", 5-9 September 2011, Granada, Spai

    Some Glimpses from Helioseismology at the Dynamics of the Deep Solar Interior

    No full text
    corecore