173 research outputs found

    In vitro transposition of ISY100, a bacterial insertion sequence belonging to the Tc1/mariner family

    Get PDF
    The Synechocystis sp. PCC6803 insertion sequence ISY100 (ISTcSa) belongs to the Tc1/mariner/IS630 family of transposable elements. ISY100 transposase was purified and shown to promote transposition in vitro. Transposase binds specifically to ISY100 terminal inverted repeat sequences via an N-terminal DNA-binding domain containing two helix–turn–helix motifs. Transposase is the only protein required for excision and integration of ISY100. Transposase made double-strand breaks on a supercoiled DNA molecule containing a mini-ISY100 transposon, cleaving exactly at the transposon 3′ ends and two nucleotides inside the 5′ ends. Cleavage of short linear substrates containing a single transposon end was less precise. Transposase also catalysed strand transfer, covalently joining the transposon 3′ end to the target DNA. When a donor plasmid carrying a mini-ISY100 was incubated with a target plasmid and transposase, the most common products were insertions of one transposon end into the target DNA, but insertions of both ends at a single target site could be recovered after transformation into Escherichia coli. Insertions were almost exclusively into TA dinucleotides, and the target TA was duplicated on insertion. Our results demonstrate that there are no fundamental differences between the transposition mechanisms of IS630 family elements in bacteria and Tc1/mariner elements in higher eukaryotes

    Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    Get PDF
    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription

    Neurofibromatosis type 1 gene product (neurofibromin) associates with microtubules

    Full text link
    The neurofibromatosis type 1 (NF1) gene was recently identified by positional cloning and found to encode a protein with structural and functional homology to mammalian and yeast GTPase-activating proteins (GAPs). Using antibodies directed against the NF1 gene product, a protein of ∼250kDa was identified and termed neurofibromin. Double-indirect immunofluorescent labeling with anti-neurofibromin and anti-tubulin antibodies demonstrates that neurofibromin associates with cytoplasmic microtubules. Immunoblotting of microtubule-enriched cytoplasmic fractions, using antibodies generated against neurofibromin, shows that neurofibromin copurifies with microtubules. When portions of neurofibromin are expressed in Sf9 insect cells they associate with polymerized microtubules; furthermore, the critical residues for this interaction reside within the GAP-related domain of neurofibromin. The unexpected association of neurofibromin with microtubules suggests that neurofibromin is involved in microtubule-mediated intracellullar signal transduction pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45544/1/11188_2005_Article_BF01233074.pd
    corecore