149 research outputs found

    Constraints on Lorentz Invariance Violating Quantum Gravity and Large Extra Dimensions Models using High Energy Gamma Ray Observations

    Full text link
    Observations of the multi-TeV spectra of the nearby BL objects Mkn 421 and Mkn 501 exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions, primarily with infrared photons having a flux level as determined by various astronomical observations. After correction for this absorption effect, the derived intrinsic spectra of these multi-TeV sources can be explained within the framework of simple synchrotron self-Compton emission models. Stecker and Glashow have shown that the existence of such annihilations via electron-positron pair production interactions up to an energy of 20 TeV puts strong constraints on Lorentz invariance violation. Such constraints have important implications for Lorentz invariance violating (LIV) quantum gravity models as well as LIV models involving large extra dimensions. We also discuss the implications of observations of high energy gamma-rays from the Crab Nebula on constraining quantum gravity models.Comment: Accepted for publication in Astroparticle Physics, nine pages, ref. to loop quantum gravity remove

    Background Dependent Lorentz Violation: Natural Solutions to the Theoretical Challenges of the OPERA Experiment

    Full text link
    To explain both the OPERA experiment and all the known phenomenological constraints/observations on Lorentz violation, the Background Dependent Lorentz Violation (BDLV) has been proposed. We study the BDLV in a model independent way, and conjecture that there may exist a "Dream Special Relativity Theory", where all the Standard Model (SM) particles can be subluminal due to the background effects. Assuming that the Lorentz violation on the Earth is much larger than those on the interstellar scale, we automatically escape all the astrophysical constraints on Lorentz violation. For the BDLV from the effective field theory, we present a simple model and discuss the possible solutions to the theoretical challenges of the OPERA experiment such as the Bremsstrahlung effects for muon neutrinos and the pion decays. Also, we address the Lorentz violation constraints from the LEP and KamLAMD experiments. For the BDLV from the Type IIB string theory with D3-branes and D7-branes, we point out that the D3-branes are flavour blind, and all the SM particles are the conventional particles as in the traditional SM when they do not interact with the D3-branes. Thus, we not only can naturally avoid all the known phenomenological constraints on Lorentz violation, but also can naturally explain all the theoretical challenges. Interestingly, the energy dependent photon velocities may be tested at the experiments.Comment: RevTex4, 14 pages, minor corrections, references adde

    Next to leading order eta production at hadron colliders

    Full text link
    Inclusive eta production at hadron colliders is considered,based on evaluation of eta fragmentation functions at next to leading order. Absolute predictions at LHC and SSC are presented, including the ratio η/π0\eta/\pi^0, together with the estimate of the theoretical uncertainty, as a possible neutral background to the H→γγH\to \gamma\gamma detection.Comment: 8 pages, latex, FNT/T-93/13,14 figures avilable upon reques

    Phenomenological description of quantum gravity inspired modified classical electrodynamics

    Get PDF
    We discuss a large class of phenomenological models incorporating quantum gravity motivated corrections to electrodynamics. The framework is that of electrodynamics in a birefringent and dispersive medium with non-local constitutive relations, which are considered up to second order in the inverse of the energy characterizing the quantum gravity scale. The energy-momentum tensor, Green functions and frequency dependent refraction indices are obtained, leading to departures from standard physics. The effective character of the theory is also emphasized by introducing a frequency cutoff. The analysis of its effects upon the standard notion of causality is performed, showing that in the radiation regime the expected corrections get further suppressed by highly oscillating terms, thus forbiding causality violations to show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and Gra

    Gravitational field around a screwed superconducting cosmic string in scalar-tensor theories

    Get PDF
    We obtain the solution that corresponds to a screwed superconducting cosmic string (SSCS) in the framework of a general scalar-tensor theory including torsion. We investigate the metric of the SSCS in Brans-Dicke theory with torsion and analyze the case without torsion. We show that in the case with torsion the space-time background presents other properties different from that in which torsion is absent. When the spin vanish, this torsion is a Ď•\phi-gradient and then it propagates outside of the string. We investigate the effect of torsion on the gravitational force and on the geodesics of a test-particle moving around the SSCS. The accretion of matter by wakes formation when a SSCS moves with speed vv is investigated. We compare our results with those obtained for cosmic strings in the framework of scalar-tensor theory.Comment: 22 pages, LaTeX, presented at the "XXII - Encontro Nacional de Fisica de Particulas e Campos", Sao Lourenco, MG, Brazi

    TeV Astrophysics Constraints on Planck Scale Lorentz Violation

    Get PDF
    We analyze observational constraints from TeV astrophysics on Lorentz violating nonlinear dispersion for photons and electrons without assuming any a priori equality between the photon and electron parameters. The constraints arise from thresholds for vacuum Cerenkov radiation, photon decay and photo-production of electron-positron pairs. We show that the parameter plane for cubic momentum terms in the dispersion relations is constrained to an order unity region in Planck units. We find that the threshold configuration can occur with an asymmetric distribution of momentum for pair creation, and with a hard photon for vacuum Cerenkov radiation.Comment: 4 pages, RevTeX4, 1 figure. Some references and a footnote added, improved discussion on the photon annihilation and GZK cutoff. Minor changes of wording. Main results unchanged. Version to appear as a Rapid Communication in PR

    Cosmological spacetimes balanced by a scale covariant scalar field

    Full text link
    A scale invariant, Weyl geometric, Lagrangian approach to cosmology is explored, with a a scalar field phi of (scale) weight -1 as a crucial ingredient besides classical matter \cite{Tann:Diss,Drechsler:Higgs}. For a particularly simple class of Weyl geometric models (called {\em Einstein-Weyl universes}) the Klein-Gordon equation for phi is explicitly solvable. In this case the energy-stress tensor of the scalar field consists of a vacuum-like term Lambda g_{mu nu} with variable coefficient Lambda, depending on matter density and spacetime geometry, and of a dark matter like term. Under certain assumptions on parameter constellations, the energy-stress tensor of the phi-field keeps Einstein-Weyl universes in locally stable equilibrium. A short glance at observational data, in particular supernovae Ia (Riess ea 2007), shows interesting empirical properties of these models.Comment: 28 pages, 1 figure, accepted by Foundations of Physic

    Lorentz breaking Effective Field Theory and observational tests

    Full text link
    Analogue models of gravity have provided an experimentally realizable test field for our ideas on quantum field theory in curved spacetimes but they have also inspired the investigation of possible departures from exact Lorentz invariance at microscopic scales. In this role they have joined, and sometime anticipated, several quantum gravity models characterized by Lorentz breaking phenomenology. A crucial difference between these speculations and other ones associated to quantum gravity scenarios, is the possibility to carry out observational and experimental tests which have nowadays led to a broad range of constraints on departures from Lorentz invariance. We shall review here the effective field theory approach to Lorentz breaking in the matter sector, present the constraints provided by the available observations and finally discuss the implications of the persisting uncertainty on the composition of the ultra high energy cosmic rays for the constraints on the higher order, analogue gravity inspired, Lorentz violations.Comment: 47 pages, 4 figures. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 2011. V.3. Typo corrected, references adde

    Gamma Ray Bursts as Probes of Quantum Gravity

    Full text link
    Gamma ray bursts (GRBs) are short and intense pulses of Îł\gamma-rays arriving from random directions in the sky. Several years ago Amelino-Camelia et al. pointed out that a comparison of time of arrival of photons at different energies from a GRB could be used to measure (or obtain a limit on) possible deviations from a constant speed of light at high photons energies. I review here our current understanding of GRBs and reconsider the possibility of performing these observations.Comment: Lectures given at the 40th winter school of theretical physics: Quantum Gravity and Phenomenology, Feb. 2004 Polan

    Gravitational field around a time-like current-carrying screwed cosmic string in scalar-tensor theories

    Full text link
    In this paper we obtain the space-time generated by a time-like current-carrying superconducting screwed cosmic string(TCSCS). This gravitational field is obtained in a modified scalar-tensor theory in the sense that torsion is taken into account. We show that this solution is comptible with a torsion field generated by the scalar field Ď•\phi . The analysis of gravitational effects of a TCSCS shows up that the torsion effects that appear in the physical frame of Jordan-Fierz can be described in a geometric form given by contorsion term plus a symmetric part which contains the scalar gradient. As an important application of this solution, we consider the linear perturbation method developed by Zel'dovich, investigate the accretion of cold dark matter due to the formation of wakes when a TCSCS moves with speed vv and discuss the role played by torsion. Our results are compared with those obtained for cosmic strings in the framework of scalar-tensor theories without taking torsion into account.Comment: 21 pages, no figures, Revised Version, presented at the "XXIV- Encontro Nacional de Fisica de Particulas e Campos ", Caxambu, MG, Brazil, to appear in Phys. Rev.
    • …
    corecore