15 research outputs found

    Energy Flow in Interjet Radiation

    Get PDF
    We study the distribution of transverse energy, Q_Omega, radiated into an arbitrary interjet angular region, Omega, in high-p_T two-jet events. Using an approximation that emphasizes radiation directly from the partons that undergo the hard scattering, we find a distribution that can be extrapolated smoothly to Q_Omega=Lambda_QCD, where it vanishes. This method, which we apply numerically in a valence quark approximation, provides a class of predictions on transverse energy radiated between jets, as a function of jet energy and rapidity, and of the choice of the region Omega in which the energy is measured. We discuss the relation of our approximation to the radiation from unobserved partons of intermediate energy, whose importance was identified by Dasgupta and Salam.Comment: 26 pages, 8 eps figures. Revised to include a discussion of non-global logarithm

    Classification of Inflationary Einstein--Scalar--Field--Models via Catastrophe Theory

    Full text link
    Various scenarios of the initial inflation of the universe are distinguished by the choice of a scalar field {\em potential} U(ϕ)U(\phi) which simulates a {\it temporarily} non--vanishing {\em cosmological term}. Our new method, which involves a reparametrization in terms of the Hubble expansion parameter HH, provides a classification of allowed inflationary potentials and of the stability of the critical points. It is broad enough to embody all known {\it exact} solutions involving one scalar field as special cases. Inflation corresponds to the evolution of critical points of some catastrophe manifold. The coalescence of its nondegenerate critical points with the creation of a degenerate critical point corresponds the reheating phase of the universe. This is illustrated by several examples.Comment: 12 pages, REVTeX, no figure

    Event Shape/Energy Flow Correlations

    Full text link
    We introduce a set of correlations between energy flow and event shapes that are sensitive to the flow of color at short distances in jet events. These correlations are formulated for a general set of event shapes, which includes jet broadening and thrust as special cases. We illustrate the method for electron-positron annihilation dijet events, and calculate the correlation at leading logarithm in the energy flow and at next-to-leading-logarithm in the event shape.Comment: 43 pages, eight eps figures; minor changes, references adde

    Response and Resistance to Ionizing Radiation

    No full text
    corecore