18 research outputs found

    Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

    Full text link
    We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure

    Surface state atoms and their contribution to the surface tension of quantum liquids

    Full text link
    We investigate the new type of excitations on the surface of liquid helium. These excitations, called surfons, appear because helium atoms have discrete energy level at the liquid surface, being attracted to the surface by the van der Waals force and repulsed at a hard-core interatomic distance. The concentration of the surfons increases with temperature. The surfons propagate along the surface and form a two-dimensional gas. Basing on the simple model of the surfon microscopic structure, we estimate the surfon activation energy and effective mass for both helium isotopes. We also calculate the contribution of the surfons to the temperature dependence of the surface tension. This contribution explains the great and long-standing discrepancy between theory and experiment on this temperature dependence in both helium isotopes. The achieved agreement between our theory and experiment is extremely high. The comparison with experiment allows to extract the surfon activation energy and effective mass. The values of these surfon microscopic parameters are in a reasonable agreement with the calculated from the proposed simple model of surfon structure.Comment: 10 pages, 6 figure

    Investigation and Treatment of High Blood Pressure in Young People

    Full text link
    Hypertension among young people is common, affecting 1 in 8 adults aged between 20 and 40 years. This number is likely to increase with lifestyle behaviors and lowering of hypertension diagnostic thresholds. Early-life factors influence blood pressure (BP) although the mechanisms are unclear; BP tracks strongly within individuals from adolescence through to later life. Higher BP at a young age is associated with abnormalities on heart and brain imaging and increases the likelihood of cardiovascular events by middle age. However, diagnosis rates are lower, and treatment is often delayed in young people. This reflects the lack of high-quality evidence that lowering BP in young adults improves cardiovascular outcomes later in life. In this review, we evaluate the current evidence regarding the association between BP in young adult life and adverse cardiovascular outcomes later in life. Following this, we discuss which young people with raised BP should be investigated for secondary causes of hypertension. Third, we assess the current models to assess cardiovascular risk and show a lack of validation in the younger age group. Fourth, we evaluate the evidence for lifestyle interventions in this age group and demonstrate a lack of persistence in BP lowering once the initial intervention has been delivered. Fifth, we address the pros and cons of drug treatment for raised BP in young people. Finally, there are unique life events in young people, such as pregnancy, that require specific advice on management and treatment of BP.</jats:p
    corecore