7 research outputs found
Determinantal Characterization of Canonical Curves and Combinatorial Theta Identities
We characterize genus g canonical curves by the vanishing of combinatorial
products of g+1 determinants of Brill-Noether matrices. This also implies the
characterization of canonical curves in terms of (g-2)(g-3)/2 theta identities.
A remarkable mechanism, based on a basis of H^0(K_C) expressed in terms of
Szego kernels, reduces such identities to a simple rank condition for matrices
whose entries are logarithmic derivatives of theta functions. Such a basis,
together with the Fay trisecant identity, also leads to the solution of the
question of expressing the determinant of Brill-Noether matrices in terms of
theta functions, without using the problematic Klein-Fay section sigma.Comment: 35 pages. New results, presentation improved, clarifications added.
Accepted for publication in Math. An
Triangle-generation in topological D-brane categories
Tachyon condensation in topological Landau-Ginzburg models can generally be
studied using methods of commutative algebra and properties of triangulated
categories. The efficiency of this approach is demonstrated by explicitly
proving that every D-brane system in all minimal models of type ADE can be
generated from only one or two fundamental branes.Comment: 34 page
On the uniqueness of the Horrocks-Mumford-bundle
SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Cohen-Macaulay modules on hypersurface singularities. 2 Dedicated to Egbert Brieskorn
SIGLETIB: RN 7280 (109) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Cohen-macaulay modules on hypersurface singularities II
SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
Line bundles and syzygies of trigonal curves
SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman