8 research outputs found

    Critical properties of loop percolation models with optimization constraints

    Full text link
    We study loop percolation models in two and in three space dimensions, in which configurations of occupied bonds are forced to form closed loop. We show that the uncorrelated occupation of elementary plaquettes of the square and the simple cubic lattice by elementary loops leads to a percolation transition that is in the same universality class as the conventional bond percolation. In contrast to this an optimization constraint for the loop configurations, which then have to minimize a particular generic energy function, leads to a percolation transition that constitutes a new universality class, for which we report the critical exponents. Implication for the physics of solid-on-solid and vortex glass models are discussed.Comment: 8 pages, 8 figure

    Phase Behavior of Type-II Superconductors with Quenched Point Pinning Disorder: A Phenomenological Proposal

    Full text link
    A general phenomenology for phase behaviour in the mixed phase of type-II superconductors with weak point pinning disorder is outlined. We propose that the ``Bragg glass'' phase generically transforms via two separate thermodynamic phase transitions into a disordered liquid on increasing the temperature. The first transition is into a glassy phase, topologically disordered at the largest length scales; current evidence suggests that it lacks the long-ranged phase correlations expected of a ``vortex glass''. This phase has a significant degree of short-ranged translational order, unlike the disordered liquid, but no quasi-long range order, in contrast to the Bragg glass. This glassy phase, which we call a ``multi-domain glass'', is confined to a narrow sliver at intermediate fields, but broadens out both for much larger and much smaller field values. The multi-domain glass may be a ``hexatic glass''; alternatively, its glassy properties may originate in the replica symmetry breaking envisaged in recent theories of the structural glass transition. Estimates for translational correlation lengths in the multi-domain glass indicate that they can be far larger than the interline spacing for weak disorder, suggesting a plausible mechanism by which signals of a two-step transition can be obscured. Calculations of the Bragg glass-multi-domain glass and the multi-domain glass-disordered liquid phase boundaries are presented and compared to experimental data. We argue that these proposals provide a unified picture of the available experimental data on both high-Tc_c and low-Tc_c materials, simulations and current theoretical understanding.Comment: 70 pages, 9 postscript figures, modified title and minor changes in published versio

    Bibliography

    No full text
    corecore