28 research outputs found

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Measurement of the local particle diffusion coefficient in a magnetized plasma

    No full text
    Local impurity particle diffusion coefficients have been measured in a low temperature plasma by the injection of test particles at the center of the plasma. The injection is accomplished by a high voltage discharge between two small graphite electrodes on a probe. The probe can be located anywhere in the plasma. The diffusion is observed spectroscopically. An analysis of the spatial and temporal evolution of the CII radiation from the carbon discharge can determine the parallel and perpendicular diffusion of the impurity ions. Results with the diagnostic have been obtained in the Proto S-1/C spheromak. The measured value of the diffusion coefficient in the afterglow plasma is in good agreement with classical predictions

    Study of the effects of photon statistics on Thomson scattering data

    No full text
    A computer code has been developed which simulates the counting statistics of a Thomson scattering measurement. The scattered and background signals in each of the wavelength channels are assumed to obey Poisson statistics, and the spectral data are fitted to a Gaussian curve using a nonlinear least-squares fitting algorithm. This method should be applicable to Thomson scattering measurements in which the signal-to-noise ratio is low due to low signal or high background. Thomson scattering data from the S-1 Spheromak have been compared to this simulation, and they have been found to be in good agreement. This code has proved to be useful assessing the effects of counting statistics relative to shot-to-shot variability in producing the observed spread in the data. It was also useful for designing improvements for the S-1 Thomson scattering system, and this method would be applicable to any measurements affected by counting statistics. 5 refs., 1 fig
    corecore