190 research outputs found

    The Morphometric Synthesis for landmarks and edge-elements in images

    Full text link
    Over the last decade, techniques from mathematical statistics, multivariate biometrics, non-Euclidean geometry, and computer graphics have been combined in a coherent new system of tools for the biometric analysis of landmarks , or labelled points, along with the biological images in which they are seen. Multivariate analyses of samples for all the usual scientific purposes - description of mean shapes, of shape variation, and of the covariation of shape with size, group, or other causes or effects - may be carried out very effectively in the tangent space to David Kendall's shape space at the Procrustes average shape. For biometric interpretation of such analyses, we need a basis for the tangent space that is Procrustes-orthonormal, and we need graphics for visualizing mean shape differences and other segments and vectors there; both of these needs are managed by the thin-plate spline. The spline also links the biometrics of landmarks to deformation analysis of curves in the images from which the landmarks originally arose. This article reviews the principal tools of this synthesis in a typical study design involving landmarks and edge information from a microfossil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75091/1/j.1365-3121.1995.tb00535.x.pd

    The Euler-Lagrange Equation for Interpolating Sequence of Landmark Datasets

    Full text link

    Efficient 3D Tracking for Motion Compensation in Beating Heart Surgery

    Full text link
    International audienceThe design of physiological motion compensation systems for robotic-assisted cardiac Minimally Invasive Surgery (MIS) is a challeng- ing research topic. In this domain, vision-based techniques have proven to be a practical way to retrieve the motion of the beating heart. However due to the complexity of the heart motion and its surface characteristics, efficient tracking is still a complicated task. In this paper, we propose an algorithm for tracking the 3D motion of the beating heart, based on a Thin-Plate Splines (TPS) parametric model. The novelty of our approach lies in that no explicit matching between the stereo camera images is re- quired and consequently no intermediate steps such as rectification are needed. Experiments conducted on ex-vivo and in-vivo tissue show the effectiveness of the proposed algorithm for tracking surfaces undergoing complex deformations

    Polyrigid and Polyaffine Transformations: A New Class of Diffeomorphisms for Locally Rigid or Affine Registration

    Get PDF
    MICCAI 2003 Best Student Award in Image Processing and Visualization.International audienceOBJECTIVE: The goal of this work is to improve the usability of a non-rigid registration software for medical images. METHOD: We have built a registration grid service in order to use the interactivity of a visualization workstation and the computing power of a cluster. On the user side, the system is composed of a graphical interface that interacts in a complex and fluid manner with the registration software running on a remote cluster. CONCLUSION: Although the transmission of images back and forth between the computer running the user interface and the cluster running the registration service adds to the total registration time, it provides a user-friendly way of using the registration software without heavy infrastructure investments in hospitals. The system exhibits good performances even if the user is connected to the grid service through a low throughput network such as a wireless network interface or ADSL
    corecore