129 research outputs found

    Towards the realistic fermion masses with a single family in extra dimensions

    Full text link
    In a class of multidimensional models, topology of a thick brane provides three chiral fermionic families with hierarchical masses and mixings in the effective four-dimensional theory, while the full model contains a single vector-like generation. We carry out numerical simulations and reproduce all known Standard Model fermion masses and mixings in one of these models.Comment: 12 pages, 2 figures, uses JHEP3.cls. Some minor corrections are mad

    Sweeping the Space of Admissible Quark Mass Matrices

    Get PDF
    We propose a new and efficient method of reconstructing quark mass matrices from their eigenvalues and a complete set of mixing observables. By a combination of the principle of NNI (nearest neighbour interaction) bases which are known to cover the general case, and of the polar decomposition theorem that allows to convert arbitrary nonsingular matrices to triangular form, we achieve a parameterization where the remaining freedom is reduced to one complex parameter. While this parameter runs through the domain bounded by a circle with radius R determined by the up-quark masses around the origin in the complex plane one sweeps the space of all mass matrices compatible with the given set of data.Comment: 18 page

    η−ηâ€Č\eta-\eta^\prime mixing and the next-to-leading-order power correction

    Full text link
    The next-to-leading-order O(1/Q4)O(1/Q^4) power correction for ηγ\eta\gamma and ηâ€ČÎł\eta^\prime\gamma form factors are evaluated and employed to explore the η−ηâ€Č\eta-\eta^\prime mixing. The parameters of the two mixing angle scheme are extracted from the data for form factors, two photon decay widths and radiative J/ψJ/\psi decays. The χ2\chi^2 analysis gives the result: fη1=(1.16±0.06)fπ,fη8=(1.33±0.23)fπ,Ξ1=−9∘±3∘,Ξ8=−21.3∘±2.3∘f_{\eta_1}=(1.16\pm0.06)f_\pi, f_{\eta_8}=(1.33\pm0.23)f_\pi, \theta_1=-9^\circ\pm 3^\circ, \theta_8=-21.3^\circ\pm 2.3^\circ, where fη1(8)f_{\eta_{1(8)}} and Ξ1(8)\theta_{1(8)} are the decay constants and the mixing angles for the singlet (octet) state. In addition, we arrive at a stringent range for fηâ€Čc:−10f_{\eta^\prime}^c:-10 MeV≀fηâ€Čc≀−4\le f_{\eta^\prime}^c\le -4 MeV.Comment: 23 pages, 9 figures, To be publshied in Phys. Rev.

    Decays of ℓ=1\ell=1 Baryons --- Quark Model versus Large-NcN_c

    Full text link
    We study nonleptonic decays of the orbitally excited, \su6 \rep{70}-plet baryons in order to test the hypothesis that the successes of the nonrelativistic quark model have a natural explanation in the large-NcN_c limit of QCD. By working in a Hartree approximation, we isolate a specific set of operators that contribute to the observed s- and d-wave decays in leading order in 1/Nc1/N_c. We fit our results to the current experimental decay data, and make predictions for a number of allowed but unobserved modes. Our tentative conclusion is that there is more to the nonrelativistic quark model of baryons than large-NcN_c.Comment: LaTeX 49pp. (38 pp. landscape), PicTex, PrePicTex, PostPicTex required for 3 figures, Harvard Preprint HUTP-94/A008. (Two additional operators are included, but conclusions are unchanged.

    Higgs particle detection using jets

    Full text link
    We study the possibility of detecting the Higgs boson in the intermediate mass range via its two jet channel. We consider only Higgs bosons produced in association with a ttˉt \bar{t} pair. Both tt and tˉ\bar{t} are required to decay semileptonically to reduce the QCD background. The signal is compared with the main background, ttˉ+2t \bar{t} + 2 jets, after appropriate cuts. A sizable signal above background is seen in our simulation at the parton level. Use of the ttˉZt\bar{t}Z channel with Z Z decaying to l+l−l^+ l^- is suggested for eliminating theoretical uncertainties in determining the ttˉHt \bar{t}H signal.Comment: 10 pages, Fig.1 a,b,c,d(surve on request), plain tex, PVAM-HEP-93-

    Rare Kaon Decays in the 1/Nc1/N_c-Expansion

    Full text link
    We study the unknown coupling constants that appear at order p4p^4 in the Chiral Perturbation Theory analysis of Kâ†’Ï€Îłâˆ—â†’Ï€l+l−K \to \pi \gamma^* \to \pi l^+ l^-, K+−→π+−γγK^{+-} \to \pi^{+-} \gamma \gamma and Kâ†’Ï€Ï€ÎłK \to \pi \pi \gamma decays. To that end, we compute the chiral realization of the ΔS = 1\Delta S \, = \, 1 Hamiltonian in the framework of the 1/Nc1/N_c-expansion of the low-energy action. The phenomenological implications are also discussed.Comment: 18 pages, LaTeX, CPT-92/P.279

    A QCD Sum Rule Approach to the s→dÎłs\to d\gamma Contribution to the Î©âˆ’â†’Îžâˆ’Îł\Omega^-\to \Xi^-\gamma Radiative Decay

    Full text link
    QCD sum rules are used to calculate the contribution of short-distance single-quark transition s→dÎłs\rightarrow d \gamma, to the amplitudes of the hyperon radiative decay, Î©âˆ’â†’Îžâˆ’Îł\Omega^-\rightarrow \Xi^-\gamma. We re-evaluate the Wilson coefficient of the effective operator responsible for this transition. We obtain a branching ratio which is comparable to the unitarity limit.Comment: 15 pages, Revtex, 13 figures available as a uuencoded, gz-compressed ps fil

    QCD Form Factors and Hadron Helicity Non-Conservation

    Get PDF
    Recent data for the ratio R(Q)=QF2(Q2)/F1(Q2)R(Q)= QF_{2}(Q^{2})/F_{1}(Q^{2}) shocked the community by disobeying expectations held for 50 years. We examine the status of perturbative QCD predictions for helicity-flip form factors. Contrary to common belief, we find there is no rule of hadron helicity conservation for form factors. Instead the analysis yields an inequality that the leading power of helicity-flip processes may equal or exceed the power of helicity conserving processes. Numerical calculations support the rule, and extend the result to the regime of laboratory momentum transfer Q2Q^{2}. Quark orbital angular momentum, an important feature of the helicity flip processes, may play a role in all form factors at large Q2Q^{2}, depending on the quark wave functions.Comment: 25 pages, 5 figure

    Effective Field Theories

    Full text link
    These lectures introduce some of the basic notions of effective field theories, as used in particle physics. The topics discussed are the ΔS=1\Delta S=1 and ΔS=2\Delta S =2 weak interactions, and chiral perturbation theory as applied to mesons, baryons, and hadrons containing heavy quarks.Comment: Lectures on Effective Field Theories at the Lake Louise Winter Institute, February 1995. 42 pages, 16 figures; extended version in hep-ph/960622

    Soft two-meson-exchange nucleon-nucleon potentials. II. One-pair and two-pair diagrams

    Full text link
    Two-meson-exchange nucleon-nucleon potentials are derived where either one or both nucleons contains a pair vertex. Physically, the meson-pair vertices are meant to describe in an effective way (part of) the effects of heavy-meson exchange and meson-nucleon resonances. {}From the point of view of ``duality,'' these two kinds of contribution are roughly equivalent. The various possibilities for meson pairs coupling to the nucleon are inspired by the chiral-invariant phenomenological Lagrangians that have appeared in the literature. The coupling constants are fixed using the linear σ\sigma model. We show that the inclusion of these two-meson exchanges gives a significant improvement over a potential model including only the standard one-boson exchanges.Comment: 21 pages RevTeX, 7 postscript figures; revised version as to appear in Phys. Rev.
    • 

    corecore