157 research outputs found
Potential energy landscape-based extended van der Waals equation
The inherent structures ({\it IS}) are the local minima of the potential
energy surface or landscape, , of an {\it N} atom system.
Stillinger has given an exact {\it IS} formulation of thermodynamics. Here the
implications for the equation of state are investigated. It is shown that the
van der Waals ({\it vdW}) equation, with density-dependent and
coefficients, holds on the high-temperature plateau of the averaged {\it IS}
energy. However, an additional ``landscape'' contribution to the pressure is
found at lower . The resulting extended {\it vdW} equation, unlike the
original, is capable of yielding a water-like density anomaly, flat isotherms
in the coexistence region {\it vs} {\it vdW} loops, and several other desirable
features. The plateau energy, the width of the distribution of {\it IS}, and
the ``top of the landscape'' temperature are simulated over a broad reduced
density range, , in the Lennard-Jones fluid. Fits to the
data yield an explicit equation of state, which is argued to be useful at high
density; it nevertheless reproduces the known values of and at the
critical point
Inherent-Structure Dynamics and Diffusion in Liquids
The self-diffusion constant D is expressed in terms of transitions among the
local minima of the potential (inherent structure, IS) and their correlations.
The formulae are evaluated and tested against simulation in the supercooled,
unit-density Lennard-Jones liquid. The approximation of uncorrelated
IS-transition (IST) vectors, D_{0}, greatly exceeds D in the upper temperature
range, but merges with simulation at reduced T ~ 0.50. Since uncorrelated IST
are associated with a hopping mechanism, the condition D ~ D_{0} provides a new
way to identify the crossover to hopping. The results suggest that theories of
diffusion in deeply supercooled liquids may be based on weakly correlated IST.Comment: submitted to PR
The Potential Energy Landscape and Mechanisms of Diffusion in Liquids
The mechanism of diffusion in supercooled liquids is investigated from the
potential energy landscape point of view, with emphasis on the crossover from
high- to low-T dynamics. Molecular dynamics simulations with a time dependent
mapping to the associated local mininum or inherent structure (IS) are
performed on unit-density Lennard-Jones (LJ). New dynamical quantities
introduced include r2_{is}(t), the mean-square displacement (MSD) within a
basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t)
the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t)
posesses an interval of linear t-dependence allowing calculation of an
intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin
dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds
the time, tau_{pl}, needed for the system to explore the basin, indicating the
action of barriers. The distinction between motion among the IS below T_{c} and
saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr
A test of non-equilibrium thermodynamics in glassy systems: the soft-sphere case
The scaling properties of the soft-sphere potential allow the derivation of
an exact expression for the pressure of a frozen liquid, i.e., the pressure
corresponding to configurations which are local minima in its multidimensional
potential energy landscape. The existence of such a relation offers the unique
possibility for testing the recently proposed extension of the liquid free
energy to glassy out-of-equilibrium conditions and the associated expression
for the temperature of the configurational degrees of freedom. We demonstrate
that the non-equilibrium free energy provides an exact description of the
soft-sphere pressure in glass states
Energy landscape, two-level systems and entropy barriers in Lennard-Jones clusters
We develop an efficient numerical algorithm for the identification of a large
number of saddle points of the potential energy function of Lennard- Jones
clusters. Knowledge of the saddle points allows us to find many thousand
adjacent minima of clusters containing up to 80 argon atoms and to locate many
pairs of minima with the right characteristics to form two-level systems (TLS).
The true TLS are singled out by calculating the ground-state tunneling
splitting. The entropic contribution to all barriers is evaluated and
discussed.Comment: 4 pages, RevTex, 2 PostScript figure
A Generalization of the Stillinger-Lovett Sum Rules for the Two-Dimensional Jellium
In the equilibrium statistical mechanics of classical Coulomb fluids, the
long-range tail of the Coulomb potential gives rise to the Stillinger-Lovett
sum rules for the charge correlation functions. For the jellium model of mobile
particles of charge immersed in a neutralizing background, the fixing of
one of the -charges induces a screening cloud of the charge density whose
zeroth and second moments are determined just by the Stillinger-Lovett sum
rules. In this paper, we generalize these sum rules to the screening cloud
induced around a pointlike guest charge immersed in the bulk interior of
the 2D jellium with the coupling constant ( is the
inverse temperature), in the whole region of the thermodynamic stability of the
guest charge . The derivation is based on a mapping technique of
the 2D jellium at the coupling = (even positive integer) onto a
discrete 1D anticommuting-field theory; we assume that the final results remain
valid for all real values of corresponding to the fluid regime. The
generalized sum rules reproduce for arbitrary coupling the standard
Z=1 and the trivial Z=0 results. They are also checked in the Debye-H\"uckel
limit and at the free-fermion point . The generalized
second-moment sum rule provides some exact information about possible sign
oscillations of the induced charge density in space.Comment: 16 page
Cluster Monte Carlo study of multi-component fluids of the Stillinger-Helfand and Widom-Rowlinson type
Phase transitions of fluid mixtures of the type introduced by Stillinger and
Helfand are studied using a continuum version of the invaded cluster algorithm.
Particles of the same species do not interact, but particles of different types
interact with each other via a repulsive potential. Examples of interactions
include the Gaussian molecule potential and a repulsive step potential.
Accurate values of the critical density, fugacity and magnetic exponent are
found in two and three dimensions for the two-species model. The effect of
varying the number of species and of introducing quenched impurities is also
investigated. In all the cases studied, mixtures of -species are found to
have properties similar to -state Potts models.Comment: 25 pages, 5 figure
Water-like anomalies for core-softened models of fluids: One dimension
We use a one-dimensional (1d) core-softened potential to develop a physical
picture for some of the anomalies present in liquid water. The core-softened
potential mimics the effect of hydrogen bonding. The interest in the 1d system
stems from the facts that closed-form results are possible and that the
qualitative behavior in 1d is reproduced in the liquid phase for higher
dimensions. We discuss the relation between the shape of the potential and the
density anomaly, and we study the entropy anomaly resulting from the density
anomaly. We find that certain forms of the two-step square well potential lead
to the existence at T=0 of a low-density phase favored at low pressures and of
a high-density phase favored at high pressures, and to the appearance of a
point at a positive pressure, which is the analog of the T=0 ``critical
point'' in the Ising model. The existence of point leads to anomalous
behavior of the isothermal compressibility and the isobaric specific heat
.Comment: 22 pages, 7 figure
Structure optimization in an off-lattice protein model
We study an off-lattice protein toy model with two species of monomers
interacting through modified Lennard-Jones interactions. Low energy
configurations are optimized using the pruned-enriched-Rosenbluth method
(PERM), hitherto employed to native state searches only for off lattice models.
For 2 dimensions we found states with lower energy than previously proposed
putative ground states, for all chain lengths . This indicates that
PERM has the potential to produce native states also for more realistic protein
models. For , where no published ground states exist, we present some
putative lowest energy states for future comparison with other methods.Comment: 4 pages, 2 figure
Thermodynamics and statistical mechanics of frozen systems in inherent states
We discuss a Statistical Mechanics approach in the manner of Edwards to the
``inherent states'' (defined as the stable configurations in the potential
energy landscape) of glassy systems and granular materials. We show that at
stationarity the inherent states are distributed according a generalized Gibbs
measure obtained assuming the validity of the principle of maximum entropy,
under suitable constraints. In particular we consider three lattice models (a
diluted Spin Glass, a monodisperse hard-sphere system under gravity and a
hard-sphere binary mixture under gravity) undergoing a schematic ``tap
dynamics'', showing via Monte Carlo calculations that the time average of
macroscopic quantities over the tap dynamics and over such a generalized
distribution coincide. We also discuss about the general validity of this
approach to non thermal systems.Comment: 10 pages, 16 figure
- …