1,247 research outputs found
Coupled superconducting qudit-resonator system: Energy spectrum, state population, and state transition under microwave drive
Superconducting quantum multilevel systems coupled to resonators have recently been considered in some
applications such as microwave lasing and high-fidelity quantum logical gates. In this work, using an rf-SQUID
type phase qudit coupled to a microwave coplanar waveguide resonator, we study both theoretically and
experimentally the energy spectrum of the system when the qudit level spacings are varied around the resonator
frequency by changing the magnetic flux applied to the qudit loop. We show that the experimental result can
be well described by a theoretical model that extends from the usual two-level Jaynes-Cummings system to the
present four-level system. It is also shown that due to the small anharmonicity of the phase device a simplified
model capturing the leading state interactions fits the experimental spectra very well. Furthermore we use the
Lindblad master equation containing various relaxation and dephasing processes to calculate the level populations
in the simpler qutrit-resonator system, which allows a clear understanding of the dynamics of the system under
the microwave drive. Our results help to better understand and perform the experiments of coupled multilevel
and resonator systems and can be applied in the case of transmon or Xmon qudits having similar anharmonicity
to the present phase device.This work was supported by the Ministry of Science and Technology of China (Grants No. 2014CB921202, No. 2015CB921104, and No. 2016YFA0300601),the National Natural Science Foundation of China (Grants No. 91321208 and No. 11674380)the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3)S.H. acknowledges support by the US NSF (PHY-1314861)
Comparative immunoprofiling of polymyositis and dermatomyositis muscles
The morphological, immunohistochemical, and immunopathological analyses of muscle biopsy are essential for the diagnosis of idiopathic inflammatory myopathies (IIMs). However, they are also one of the most common causes of misdiagnosis. Although several diagnostic criteria have been proposed for the diagnosis of IIMs, misdiagnosis still remains common in clinical practice. The present study aims to characterize the inflammatory profile of IIMs, including the expression of MHC-I, MHC-II, MAC and infiltrating cells. We also investigated the sensitivity and specificity of MHC-I and MHC-II immunostaining for the diagnosis of IIMs. We found that the expression of MHC-I and MHC-II was both higher in IIMs than in non-inflammatory myopathies (NIMs). The distribution of MHC-I in IIMs is different from that of MHC-II. MHC-I is mainly located in the sarcoplasms, while MHC-II is located mostly on the sarcolemmas. Moreover, our findings suggest that MAC may be a potential marker to diagnose DM, and the combination of MHC-I and MHC-II immunostaining results in a higher sensitivity and specificity for IIM diagnosis, especially for DM. In addition, infiltrating cells in PM were mainly CD8+ cells, but we found in DM and NIMs they were primarily CD4+ cells, which is consistent with previous studies. Lastly, glucocorticoid treatment and disease duration have little effect on the MHC-I and MHC-II expression pattern. Our findings indicate that the immunostaining of inflammatory markers such as MHC-I, MHC-II, CD4, CD8, CD303 and MAC are of diagnostic value for IIMs regardless of the immunosuppression regime and disease duration
Impact of water matrix on the removal of micropollutants by advanced oxidation technologies
Micropollutants (MPs) in the aquatic compartments are originated from many sources and particularly from the effluents of urban wastewater treatment plants (UWWTPs). Advanced oxidation technologies (AOTs) usually applied after biological processes, have recently emerged as effective tertiary treatments for the removal of MPs, but the oxidation rates of the single compounds may be largely affected by the constituent species of the water matrix. These species include dissolved organic matter and inorganic species (e.g., carbonate, bicarbonate, nitrite, sulphate, chloride). This review analyses the impact of such substances on common AOTs including photolysis, UV/H2O2, Fenton, photocatalysis, and ozone-based processes. The degradation efficiency of single MPs by AOTs results from the combined impact of the water matrix constituents, which can have neutral, inhibiting or promoting effect, depending on the process and the mechanism by which these water components react. Organic species can be either inhibitors (by light attenuation; scavenging effects; or adsorption to catalyst) or promoters (by originating reactive oxygen species (ROS) which enhance indirect photolysis; or by regenerating the catalyst). Inorganic species can also be either inhibitors (by scavenging effects; formation of radicals less active than hydroxyl radicals; iron complexation; adsorption to catalyst or decrease of its effective surface area) or promoters (e.g., nitrate ions by formation of ROS; iron ions as additional source of catalyst). The available data reviewed here is limited and the role and mechanisms of individual water components are still not completely understood. Further studies are needed to elucidate the wide spectrum of reactions occurring in complex wastewaters and to increase the adoption of AOTs in UWWTPs
Enhanced Carrier Transport and Bandgap Reduction in Sulfur Modified BiVO4 Photoanodes
Recent progress on bismuth vanadate BiVO4 has shown it to be among the highest performing metal oxide photoanode materials. However, further improvement, especially in the form of thin film photoelectrodes, is hampered by its poor charge carrier transport and its relatively wide bandgap. Here, sulfur incorporation is used to address these limitations. A maximum bandgap decrease of 0.3 eV is obtained, which increases the theoretical maximum solar to hydrogen efficiency from 9 to 12 . Hard X ray photoelectron spectroscopy HAXPES measurements as well as density functional theory DFT calculations show that the main reason for the bandgap decrease is an upward shift of the valence band maximum. Time resolved microwave conductivity measurements reveal an 3 times higher charge carrier mobility compared to unmodified BiVO4, resulting in a 70 increase in the carrier diffusion length. This work demonstrates that sulfur doping can be a promising and practical method to improve the performance of wide bandgap metal oxide photoelectrode
Conditions for the freezing phenomena of geometric measure of quantum discord for arbitrary two-qubit X states under non-dissipative dephasing noises
We study the dynamics of geometric measure of quantum discord (GMQD) under
the influences of two local phase damping noises. Consider the two qubits
initially in arbitrary X-states, we find the necessary and sufficient
conditions for which GMQD is unaffected for a finite period. It is further
shown that such results also hold for the non-Markovian dephasing process.Comment: 4 pages, 2 figure
Pion photoproduction on the nucleon in the quark model
We present a detailed quark-model study of pion photoproduction within the
effective Lagrangian approach. Cross sections and single-polarization
observables are investigated for the four charge channels, , , , and .
Leaving the coupling strength to be a free parameter, we obtain a
reasonably consistent description of these four channels from threshold to the
first resonance region. Within this effective Lagrangian approach, strongly
constrainted by the quark model, we consider the issue of double-counting which
may occur if additional {\it t}-channel contributions are included.Comment: Revtex, 35 pages, 16 eps figures; version to appear on PR
Next big challenges in core AI technology
Algorithms and the Foundations of Software technolog
Numerical approximation of the Euler-Poisson-Boltzmann model in the quasineutral limit
This paper analyzes various schemes for the Euler-Poisson-Boltzmann (EPB)
model of plasma physics. This model consists of the pressureless gas dynamics
equations coupled with the Poisson equation and where the Boltzmann relation
relates the potential to the electron density. If the quasi-neutral assumption
is made, the Poisson equation is replaced by the constraint of zero local
charge and the model reduces to the Isothermal Compressible Euler (ICE) model.
We compare a numerical strategy based on the EPB model to a strategy using a
reformulation (called REPB formulation). The REPB scheme captures the
quasi-neutral limit more accurately
Improved Squeaky Wheel Optimisation for Driver Scheduling
This paper presents a technique called Improved Squeaky Wheel Optimisation
for driver scheduling problems. It improves the original Squeaky Wheel
Optimisations effectiveness and execution speed by incorporating two additional
steps of Selection and Mutation which implement evolution within a single
solution. In the ISWO, a cycle of
Analysis-Selection-Mutation-Prioritization-Construction continues until
stopping conditions are reached. The Analysis step first computes the fitness
of a current solution to identify troublesome components. The Selection step
then discards these troublesome components probabilistically by using the
fitness measure, and the Mutation step follows to further discard a small
number of components at random. After the above steps, an input solution
becomes partial and thus the resulting partial solution needs to be repaired.
The repair is carried out by using the Prioritization step to first produce
priorities that determine an order by which the following Construction step
then schedules the remaining components. Therefore, the optimisation in the
ISWO is achieved by solution disruption, iterative improvement and an iterative
constructive repair process performed. Encouraging experimental results are
reported
- …