286 research outputs found

    New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation

    Full text link
    We compute the electromagnetic radiative corrections to all leading annihilation processes which may occur in the Galactic dark matter halo, for dark matter in the framework of supersymmetric extensions of the Standard Model (MSSM and mSUGRA), and present the results of scans over the parameter space that is consistent with present observational bounds on the dark matter density of the Universe. Although these processes have previously been considered in some special cases by various authors, our new general analysis shows novel interesting results with large corrections that may be of importance, e.g., for searches at the soon to be launched GLAST gamma-ray space telescope. In particular, it is pointed out that regions of parameter space where there is a near degeneracy between the dark matter neutralino and the tau sleptons, radiative corrections may boost the gamma-ray yield by up to three or four orders of magnitude, even for neutralino masses considerably below the TeV scale, and will enhance the very characteristic signature of dark matter annihilations, namely a sharp step at the mass of the dark matter particle. Since this is a particularly interesting region for more constrained mSUGRA models of supersymmetry, we use an extensive scan over this parameter space to verify the significance of our findings. We also re-visit the direct annihilation of neutralinos into photons and point out that, for a considerable part of the parameter space, internal bremsstrahlung is more important for indirect dark matter searches than line signals.Comment: Replaced Fig. 2c which by mistake displayed the same spectrum as Fig. 2d; the radiative corrections reported here are now implemented in DarkSUSY which is available at http://www.physto.se/~edsjo/darksusy

    Mixed axion/neutralino cold dark matter in supersymmetric models

    Full text link
    We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter. The mixed axion/neutralino CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as \sim (f_a/N)/m_{axino}^{3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In mixed axion/neutralino CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.Comment: 31 pages including 21 figure

    Seesaw Extended MSSM and Anomaly Mediation without Tachyonic Sleptons

    Full text link
    Superconformal anomalies provide an elegant and economical way to understand the soft breaking parameters in SUSY models; however, implementing them leads to the several undesirable features including: tachyonic sleptons and electroweak symmetry breaking problems in both the MSSM and the NMSSM. Since these two theories also have the additonal problem of massless neutrinos, we have reconsidered the AMSB problems in a class of models that extends the NMSSM to explain small neutrino masses via the seesaw mechanism. In a recent paper, we showed that for a class of minimal left-right extensions, a built-in mechanism exists which naturally solves the tachyonic slepton problem and provides new alternatives to the MSSM that also have automatic R-parity conservation. In this paper, we discuss how electroweak symmetry breaking arises in this model through an NMSSM-like low energy theory with a singlet VEV, induced by the structure of the left-right extension and of the right magnitude. We then study the phenomenological issues and find: the LSP is an Higgsino-wino mix, new phenomenology for chargino decays to the LSP, degenerate same generation sleptons and a potential for a mild squark-slepton degeneracy. We also discuss possible collider signatures and the feasibility of dark matter in this model.Comment: 40 pages, 10 figures, 5 tables; v3: Added addendum and three new references; v4: Added reference that was inadvertently omitte

    Search for Tau Flavour Violation at the LHC

    Full text link
    We explore the prospects for searches at the LHC for sparticle decays that violate τ\tau lepton number, in the light of neutrino oscillation data and the seesaw model for neutrino masses and mixing. We analyse the theoretical and phenomenological conditions required for tau flavour violation to be observable in \chi_2 \to \chi + \tau^\pm \mu^\mp decays, for cosmologically interesting values of the relic neutralino LSP density. We study the relevant supersymmetric parameter space in the context of the Constrained Minimal Supersymmetric Extension of the Standard Model (CMSSM) and in SU(5) extensions of the theory. We pay particular attention to the possible signals from hadronic tau decays, that we analyse using PYTHIA event simulation. We find that a signal for \tau flavour-violating \chi_2 decays may be observable if the branching ratio exceeds about 10%. This may be compatible with the existing upper limit on \tau \to \mu \gamma decays if there is mixing between right-handed sleptons, as could be induced in non-minimal SU(5) GUTs.Comment: 24 pages, 10 fig

    Evaluation of the Theoretical Uncertainties in the Z to ll Cross Sections at the LHC

    Full text link
    We study the sources of systematic errors in the measurement of the Z to ll cross-sections at the LHC. We consider the systematic errors in both the total cross-section and acceptance for anticipated experimental cuts. We include the best available analysis of QCD effects at NNLO in assessing the effect of higher order corrections and PDF and scale uncertainties on the theoretical acceptance. In addition, we evaluate the error due to missing NLO electroweak corrections and propose which MC generators and computational schemes should be implemented to best simulate the events.Comment: 23 pages, 52 eps figures, LaTeX with JHEP3.cls, epsfig. Added a reference, acknowledgment, and a few clarifying comments. 4/29: Changes in references, minor rewordings and misprint corrections, and one new table (Table 4) comparing CTEQ and MRST PDFs in the NNLO calculation. Version 6 adds email addresses and corrects one referenc

    Anomaly Mediation, Fayet-Iliopoulos D-terms and the Renormalisation Group

    Full text link
    We address renormalisation group evolution issues that arise in the Anomaly Mediated Supersymmetry Breaking scenario when the tachyonic slepton problem is resolved by Fayet-Iliopoulos term contributions. We present typical sparticle spectra both for the original formulation of this idea and an alternative using Fayet-Iliopoulos terms for a U(1) compatible with a straightforward GUT embedding.Comment: 20 pages, 2 figure

    Realistic Anomaly Mediation with Bulk Gauge Fields

    Get PDF
    We present a simple general framework for realistic models of supersymmetry breaking driven by anomaly mediation. We consider a 5-dimensional "brane universe" where the visible and hidden sectors are localized on different branes, and the standard model gauge bosons propagate in the bulk. In this framework there can be charged scalar messengers that have contact interactions with the hidden sector, either localized in the hidden sector or in the bulk. These scalars obtain soft masses that feed into visible sector scalar masses at two loop order via bulk gauge interactions. This contribution is automatically flavor-blind, and can be naturally positive. If the messengers are in the bulk this contribution is automatically the same order of magnitude as the anomaly mediated contribution, independent of the brane spacing. If the messengers are localized to a brane the two effects are of the same order for relatively small brane spacings. The gaugino masses and A terms are determined completely by anomaly mediation. In order for anomaly mediation to dominate over radion mediation the radion must be is stabilized in a manner that preserves supersymmetry, with supergravity effects included. We show that this occurs in simple models. We also show that the mu problem can be solved by the vacuum expectation value of a singlet in this framework.Comment: 16 pages, LaTeX2e, no figure

    Electroweak contributions to squark--gluino production at the LHC

    Full text link
    We calculated the electroweak contributions to the hadronic production of a squark in association with a gluino within the Minimal Supersymmetric Standard Model (MSSM). Presented are complete next-to-leading order electroweak (NLO EW) corrections at O(alpha_s^2 alpha), which include real photon and real quark radiation processes. Also considered are photon induced tree level O(alpha_s alpha) contributions.Comment: 23 pages, 15 figure

    Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB

    Full text link
    Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields ({\it e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.Comment: 29 pages including 13 figure

    Supersymmetry discovery potential of the LHC at s=\sqrt{s}=10 and 14 TeV without and with missing ETE_T

    Full text link
    We examine the supersymmetry (SUSY) reach of the CERN LHC operating at s=10\sqrt{s}=10 and 14 TeV within the framework of the minimal supergravity model. We improve upon previous reach projections by incorporating updated background calculations including a variety of 2n2\to n Standard Model (SM) processes. We show that SUSY discovery is possible even before the detectors are understood well enough to utilize either ETmissE_T^{\rm miss} or electrons in the signal. We evaluate the early SUSY reach of the LHC at s=10\sqrt{s}=10 TeV by examining multi-muon plus 4\ge4 jets and also dijet events with {\it no} missing ETE_T cuts and show that the greatest reach in terms of m1/2m_{1/2} occurs in the dijet channel. The reach in multi-muons is slightly smaller in m1/2m_{1/2}, but extends to higher values of m0m_0. We find that an observable multi-muon signal will first appear in the opposite-sign dimuon channel, but as the integrated luminosity increases the relatively background-free but rate-limited same-sign dimuon, and ultimately the trimuon channel yield the highest reach. We show characteristic distributions in these channels that serve to distinguish the signal from the SM background, and also help to corroborate its SUSY origin. We then evaluate the LHC reach in various no-lepton and multi-lepton plus jets channels {\it including} missing ETE_T cuts for s=10\sqrt{s}=10 and 14 TeV, and plot the reach for integrated luminosities ranging up to 3000 fb1^{-1} at the SLHC. For s=10\sqrt{s}=10 TeV, the LHC reach extends to mgluino=1.9,2.3,2.8m_{gluino}=1.9, 2.3, 2.8 and 2.9 TeV for msquarkmgluinom_{squark}\sim m_{gluino} and integrated luminosities of 10, 100, 1000 and 3000 fb1^{-1}, respectively. For s=14\sqrt{s}=14 TeV, the LHC reach for the same integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for ab^-1 integrated luminosities, with minor corrections of references and text. 2 figures added. To appear in JHE
    corecore