5 research outputs found

    Electronic transport in EuB6_6

    Get PDF
    EuB6_6 is a magnetic semiconductor in which defects introduce charge carriers into the conduction band with the Fermi energy varying with temperature and magnetic field. We present experimental and theoretical work on the electronic magnetotransport in single-crystalline EuB6_6. Magnetization, magnetoresistance and Hall effect data were recorded at temperatures between 2 and 300 K and in magnetic fields up to 5.5 T. The negative magnetoresistance is well reproduced by a model in which the spin disorder scattering is reduced by the applied magnetic field. The Hall effect can be separated into an ordinary and an anomalous part. At 20 K the latter accounts for half of the observed Hall voltage, and its importance decreases rapidly with increasing temperature. As for Gd and its compounds, where the rare-earth ion adopts the same Hund's rule ground state as Eu2+^{2+} in EuB6_{6}, the standard antisymmetric scattering mechanisms underestimate the sizesize of this contribution by several orders of magnitude, while reproducing its shapeshape almost perfectly. Well below the bulk ferromagnetic ordering at TCT_C = 12.5 K, a two-band model successfully describes the magnetotransport. Our description is consistent with published de Haas van Alphen, optical reflectivity, angular-resolved photoemission, and soft X-ray emission as well as absorption data, but requires a new interpretation for the gap feature deduced from the latter two experiments.Comment: 35 pages, 12 figures, submitted to PR
    corecore