267 research outputs found

    Dispersion of a single hole in the t-J model

    Full text link
    The dispersion of a single hole in the t-J model obtained by the exact result of 32 sites and the results obtained by self-consistent Born approximation and the Green function Monte Carlo method can be simply derived by a mean-field theory with d-RVB and antiferromagnetic order parameters. In addition, it offers a simple explanation for the difference observed between those results. The presence of the extended van Hove region at (pi,0) is a consequence of the d-RVB pairing independenct of the antiferromagnetic order. Results including t' and t" are also presented and explained consistently in a similar way.Comment: LaTex file, 5 pages with 5 embedded eps figure

    An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model

    Full text link
    We have calculated S(q) and the single particle distribution function for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site lattice with periodic boundary conditions; we justify the use of this lattice in compariosn to those of having the full square symmetry of the bulk. This new cluster has a high density of vec k points along the diagonal of reciprocal space, viz. along k = (k,k). The results clearly demonstrate that when the single hole problem has a ground state with a system momentum of vec k = (pi/2,pi/2), the resulting ground state for N holes involves a shift of the peak of the system's structure factor away from the antiferromagnetic state. This shift effectively increases continuously with N. When the single hole problem has a ground state with a momentum that is not equal to k = (pi/2,pi/2), then the above--mentioned incommensurability for N holes is not found. The results for the incommensurate ground states can be understood in terms of rigid--band filling: the effective occupation of the single hole k = (pi/2,pi/2) states is demonstrated by the evaluation of the single particle momentum distribution function . Unlike many previous studies, we show that for the many hole ground state the occupied momentum states are indeed k = (+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include

    Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model

    Full text link
    A one-dimensional model of electrons locally coupled to spin-1/2 degrees of freedom is studied by numerical techniques. The model is one in the class of dynamicdynamic HubbardHubbard modelsmodels that describe the relaxation of an atomic orbital upon double electron occupancy due to electron-electron interactions. We study the parameter regime where pairing occurs in this model by exact diagonalization of small clusters. World line quantum Monte Carlo simulations support the results of exact diagonalization for larger systems and show that kinetic energy is lowered when pairing occurs. The qualitative physics of this model and others in its class, obtained through approximate analytic calculations, is that superconductivity occurs through hole undressing even in parameter regimes where the effective on-site interaction is strongly repulsive. Our numerical results confirm the expected qualitative behavior, and show that pairing will occur in a substantially larger parameter regime than predicted by the approximate low energy effective Hamiltonian.Comment: Some changes made in response to referees comments. To be published in Phys.Rev.

    Microscopic theory of weak pseudogap behavior in the underdoped cuprate superconductors I: General theory and quasiparticle properties

    Full text link
    We derive in detail a novel solution of the spin fermion model which is valid in the quasi-static limit pi T<<omega_sf, found in the intermediate (pseudoscaling) regime of the magnetic phase diagram of cuprate superconductors, and use it to obtain results for the temperature and doping dependence of the single particle spectral density, the electron-spin fluctuation vertex function, and the low frequency dynamical spin susceptibility. The resulting strong anisotropy of the spectral density and the vertex function lead to the qualitatively different behavior of_hot_ (around k=(pi,0)) and_cold_ (around k=(pi/2,pi/2)) quasiparticles seen in ARPES experiments. We find that the broad high energy features found in ARPES measurements of the spectral density of the underdoped cuprate superconductors are determined by strong antiferromagnetic (AF) correlations and incoherent precursor effects of an SDW state, with reduced renormalized effective coupling constant. The electron spin-fluctuation vertex function, i.e. the effective interaction of low energy quasiparticles and spin degrees of freedom, is found to be strongly anisotropic and enhanced for hot quasiparticles; the corresponding charge-fluctuation vertex is considerably diminished. We thus demonstrate that, once established, strong AF correlations act to reduce substantially the effective electron-phonon coupling constant in cuprate superconductors.Comment: REVTEX with EPS figures, uses multicol.sty, epsfig,sty, psfig.st

    Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study

    Full text link
    We describe results of electronic Raman-scattering experiments in differently doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and metallic samples suggests that at least the low-energy part of the spectra originates predominantly from excitations of free carriers. We therefore propose an analysis of the data in terms of a memory function approach. Dynamical scattering rates and mass-enhancement factors for the carriers are obtained. In B2g symmetry the Raman data compare well to the results obtained from ordinary and optical transport. For underdoped materials the dc scattering rates in B1g symmetry become temperature independent and considerably larger than in B2g symmetry. This increasing anisotropy is accompanied by a loss of spectral weight in B2g symmetry in the range between the superconducting transition at Tc and a characteristic temperature T* of order room temperature which compares well with the pseudogap temperature found in other experiments. The energy range affected by the pseudogap is doping and temperature independent. The integrated spectral loss is approximately 25% in underdoped samples and becomes much weaker towards higher carrier concentration. In underdoped samples, superconductivity related features in the spectra can be observed only in B2g symmetry. The peak frequencies scale with Tc. We do not find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm

    Berry phases and pairing symmetry in Holstein-Hubbard polaron systems

    Full text link
    We study the tunneling dynamics of dopant-induced hole polarons which are self-localized by electron-phonon coupling in a two-dimensional antiferro- magnet. Our treatment is based on a path integral formulation of the adia- batic approximation, combined with many-body tight-binding, instanton, con- strained lattice dynamics, and many-body exact diagonalization techniques. Our results are mainly based on the Holstein-tJtJ and, for comparison, on the Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics is mapped onto an effective low-energy Hamiltonian which takes the form of a fermion tight-binding model with occupancy dependent, predominant- ly 2nd and 3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an effective intersite charge interactions. Antiferromagnetic spin correlations in the original many-electron Hamiltonian are reflected by an attractive contribution to the 1st neighbor charge interaction and by Berry phase factors which determine the signs of effective polaron tunneling ma- trix elements. In the two-polaron case, these phase factors lead to polaron pair wave functions of either dx2y2d_{x^2-y^2}-wave symmetry or p-wave symme- try with zero and nonzero total pair momentum, respectively. Implications for the doping dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure

    Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model

    Full text link
    Slave boson calculations have been carried out in the three-band tJ model for the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode phonons. Phonon-induced Van Hove nesting leads to a phase separation between a hole-doped domain and a (magnetic) domain near half filling, with long-range Coulomb forces limiting the separation to a nanoscopic scale. Strong correlation effects pin the Fermi level close to, but not precisely at the Van Hove singularity (VHS), which can enhance the tendency to phase separation. The resulting dispersions have been calculated, both in the uniform phases and in the phase separated regime. In the latter case, distinctly different dispersions are found for large, random domains and for regular (static) striped arrays, and a hypothetical form is presented for dynamic striped arrays. The doping dependence of the latter is found to provide an excellent description of photoemission and thermodynamic experiments on pseudogap formation in underdoped cuprates. In particular, the multiplicity of observed gaps is explained as a combination of flux phase plus charge density wave (CDW) gaps along with a superconducting gap. The largest gap is associated with VHS nesting. The apparent smooth evolution of this gap with doping masks a crossover from CDW-like effects near optimal doping to magnetic effects (flux phase) near half filling. A crossover from large Fermi surface to hole pockets with increased underdoping is found. In the weakly overdoped regime, the CDW undergoes a quantum phase transition (TCDW0T_{CDW}\to 0), which could be obscured by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes, esp. in Sect. 3, Figs 1-4,6 replace

    Vibrational properties of the one-component σ\sigma phase

    Full text link
    A structural model of a one-component σ\sigma-phase crystal has been constructed by means of molecular dynamics simulation. The phonon dispersion curves and the vibrational density of states were computed for this model. The dependence of the vibrational properties on the thermodynamical parameters was investigated. The vibrational density of states of the σ\sigma-phase structure is found to be similar to that of a one-component glass with icosahedral local order. On the basis of this comparison it is concluded that the σ\sigma phase can be considered to be a good crystalline reference structure for this glass
    corecore