1 research outputs found

    Antiferromagnetically coupled alternating spin chains

    Full text link
    The effect of antiferromagnetic interchain coupling in alternating spin (1,1/2) chains is studied by mean of a spin wave theory and density matrix renormalization group (DMRG). In particular, two limiting cases are investigated, the two-leg ladder and its two dimensional (2D) generalization. Results of the ground state properties like energy, spin gap, magnetizations, and correlation functions are reported for the whole range of the interchain coupling J⊥J_{\perp}. For the 2D case the spin wave results predict a smooth dimensional crossover from 1D to 2D keeping the ground state always ordered. For the ladder system, the DMRG results show that any J⊥>0J_{\perp}>0 drives the system to a gapped ground state. Furthermore the behaviour of the correlation functions closely resemble the uniform spin-1/2 ladder. For J⊥J_{\perp} lower than 0.3, however, the gap behaves quadratically as Δ∼0.6J⊥2\Delta\sim0.6 J^2_{\perp}. Finally, it is argued that the behaviour of the spin gap for an arbitrary number of mixed coupled spin chains is analogous to that of the uniform spin-1/2 chains.Comment: 5 pages, 7 ps-figure
    corecore