7 research outputs found

    Coupling between the circadian clock and cell cycle oscillators: Implication for healthy cells and malignant growth

    Get PDF
    Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer

    Deterministic mathematical modelling for cancer chronotherapeutics: cell population dynamics and treatment optimisation

    Get PDF
    Chronotherapeutics has been designed and used for more than twenty years as an effective treatment against cancer by a few teams around the world, among whom one of the first is Francis LĂ©vi's at Paul-Brousse hospital (Villejuif, France), in application of circadian clock physiology to determine best infusion times within the 24-hour span for anticancer drug delivery. Mathematical models have been called in the last ten years to give a rational basis to such optimised treatments, for use in the laboratory and ultimately in the clinic. While actual clinical applications of the theoretical optimisation principles found have remained elusive so far to improve chronotherapeutic treatments in use, mathematical models provide proofs of concepts and tracks to be explored experimentally, to progress from theory to bedside. Starting from a simple ordinary differential equation model that allowed setting and numerically solving a drug delivery optimisation problem with toxicity constraints, this modelling enterprise has been extended to represent the division cycle in proliferating cell populations with different molecular targets, to allow for the representation of anticancer drug combinations that are used in clinical oncology. The main point to be made precise in such a therapeutic optimisation problem is to establish, here in the frame of circadian chronobiology, physiologically based differences between healthy and cancer cell populations in their responses to drugs. To this aim, clear biological evidence at the molecular level is still lacking, so that, starting from indirect observations at the experimental and clinical levels and from theoretical considerations on the model, speculations have been made, that will be exposed in this review of cancer chronotherapeutics models with the corresponding optimisation problems and their numerical solutions, to represent these differences between the two cell populations, with regard to circadian clock control

    Critical cholangiocarcinogenesis control by cryptochrome clock genes

    No full text
    A coordinated network of molecular circadian clocks in individual cells generates 24-hr rhythms in liver metabolism and proliferation. Circadian disruption through chronic jet lag or Per2 clock gene mutation was shown to accelerate hepatocarcinoma development in mice. As divergent effects were reported for clock genes Per and Cry regarding xenobiotic toxicity, we questioned the role of Cry1 and Cry2 in liver carcinogenesis. Male WT and Cry1-/-Cry2-/- mice (C57Bl/6 background) were chronically exposed to diethylnitrosamine (DEN) at ZT11. Rest-activity and body temperature rhythms were monitored using an implanted radiotransmitter. Serum aspartate and alanine aminotransferases (AST and ALT) were determined on four occasions during the progression stage. After 7 months, serum alkaline phosphatases (ALP) were determined, and livers were sampled for microscopic tumor nodule counting and histopathology. Five months after initiation of DEN treatment, we found that Cry1-/-Cry2-/- mice developed severe liver dysplasia, as evident from the increased AST, ALT and ALP levels, as compared to WT mice. DEN exposure induced primary liver cancers in nearly fivefold as many Cry1-/-Cry2-/- mice as compared to WT mice (p=0.01). Microscopic study revealed no difference in the average number of hepatocarcinomas and a nearly eightfold increase in the average number of cholangiocarcinomas in Cry1-/-Cry2-/- mice, as compared to WT mice. This study validated the hypothesis that molecular circadian clock disruption dramatically increased chemically induced liver carcinogenesis. In addition, the pronounced shift toward cholangiocarcinoma in DEN exposed Cry1-/-Cry2-/- mice revealed a critical role of the Cry clock genes in bile duct carcinogenesis

    Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle

    No full text
    Daily synchronous rhythms of cell division at the tissue or organism level are observed in many species and suggest that the circadian clock and cell cycle oscillators are coupled. For mammals, despite known mechanistic interactions, the effect of such coupling on clock and cell cycle progression, and hence its biological relevance, is not understood. In particular, we do not know how the temporal organization of cell division at the single-cell level produces this daily rhythm at the tissue level. Here we use multispectral imaging of single live cells, computational methods, and mathematical modeling to address this question in proliferating mouse fibroblasts. We show that in unsynchronized cells the cell cycle and circadian clock robustly phase lock each other in a 1:1 fashion so that in an expanding cell population the two oscillators oscillate in a synchronized way with a common frequency. Dexamethasone-induced synchronization reveals additional clock states. As well as the low-period phase-locked state there are distinct coexisting states with a significantly higher period clock. Cells transition to these states after dexamethasone synchronization. The temporal coordination of cell division by phase locking to the clock at a single-cell level has significant implications because disordered circadian function is increasingly being linked to the pathogenesis of many diseases, including cancer

    Um Remédio Contra a Exclusão: Maledetta Follia?Uma Revisão

    No full text
    Esta revisão busca uma perspectiva atualizada mas socialmente não amnésica para a atuação dos psicólogos em saúde comunitária. Situam-se historicamente as principais propostas metodológicas deste século na análise e intervenção terapêutica junto a excluídos. Procura-se pelo especificamente humano, responsável pela dinâmica de formação dos excluídos por seu grupo-raiz (familiar/social). Detalha-se a loucura como exclusão da perspectiva psicanalítica (Freud e Lacan) fecundada pela fenomenologia (Merleau-Ponty, Jaspers, Laing). Dois métodos complementares são especificamente descritos e indicados: a técnica de grupo operativo (Pichón-Rivière) para pacientes ou equipe terapêutica multidisciplinar, e o método de holding lúdico (Winnicott) adaptado para grupos de pacientes adultos graves

    A bicentenary of the study of Australian Aboriginal religions

    No full text

    Circadian-Hypoxia Link and its Potential for Treatment of Cardiovascular Disease

    No full text
    corecore