37 research outputs found

    Constraining the parameters of binary systems through time-dependent light deflection

    Full text link
    A theory is derived relating the configuration of the cores of active galaxies, specifically candidates for presumed super-massive black hole binaries (SMBHBs), to time-dependent changes in images of those galaxies. Three deflection quantities, resulting from the monopole term, mass quadrupole term, and spin dipole term of the core, are examined. The resulting observational technique is applied to the galaxy 3C66B. This technique is found to under idealized circumstances surpass the technique proposed by Jenet et al. in accuracy for constraining the mass of SMBHB candidates, but is exceeded in accuracy and precision by Jenet's technique under currently-understood likely conditions. The technique can also under favorable circumstances produce results measurable by currently-available astronomical interferometry such as very-long baseline-interferometry (VLBI).Comment: 15 pages, 2 figures, accepted in General Relativity & Gravitatio

    Evading the pulsar constraints on the cosmic string tension in supergravity inflation

    Full text link
    The cosmic string is a useful probe of the early Universe and may give us a clue to physics at high energy scales where any artificial particle accelerators cannot reach. Although one of the most promising tools is the cosmic microwave background, the constraint from gravitational waves is becoming so stringent that one may not hope to detect its signatures in the cosmic microwave background. In this paper, we construct a scenario that contains cosmic strings observable in the cosmic microwave background while evading the constraint imposed by the recent pulsar timing data. We argue that cosmic strings with relatively large tension are allowed by delaying the onset of the scaling regime. We also show that this scenario is naturally realized in the context of chaotic inflation in supergravity, where the phase transition is governed by the Hubble induced mass.Comment: 24pages, 3 figures, published in JCA

    The effect of extra dimensions on gravity wave bursts from cosmic string cusps

    Full text link
    We explore the kinematical effect of having extra dimensions on the gravity wave emission from cosmic strings. Additional dimensions both round off cusps, and reduce the probability of their formation. We recompute the gravity wave burst, taking into account these two factors, and find a potentially significant damping on the gravity waves of the strings.Comment: 33 pages, 8 figures, published versio

    Evolution of circular, non-equatorial orbits of Kerr black holes due to gravitational-wave emission: II. Inspiral trajectories and gravitational waveforms

    Get PDF
    The inspiral of a ``small'' (μ1100M\mu \sim 1-100 M_\odot) compact body into a ``large'' (M1057MM \sim 10^{5-7} M_\odot) black hole is a key source of gravitational radiation for the space-based gravitational-wave observatory LISA. The waves from such inspirals will probe the extreme strong-field nature of the Kerr metric. In this paper, I investigate the properties of a restricted family of such inspirals (the inspiral of circular, inclined orbits) with an eye toward understanding observable properties of the gravitational waves that they generate. Using results previously presented to calculate the effects of radiation reaction, I assemble the inspiral trajectories (assuming that radiation reacts adiabatically, so that over short timescales the trajectory is approximately geodesic) and calculate the wave generated as the compact body spirals in. I do this analysis for several black hole spins, sampling a range that should be indicative of what spins we will encounter in nature. The spin has a very strong impact on the waveform. In particular, when the hole rotates very rapidly, tidal coupling between the inspiraling body and the event horizon has a very strong influence on the inspiral time scale, which in turn has a big impact on the gravitational wave phasing. The gravitational waves themselves are very usefully described as ``multi-voice chirps'': the wave is a sum of ``voices'', each corresponding to a different harmonic of the fundamental orbital frequencies. Each voice has a rather simple phase evolution. Searching for extreme mass ratio inspirals voice-by-voice may be more effective than searching for the summed waveform all at once.Comment: 15 pages, 11 figures, accepted for publication in PRD. This version incorporates referee's comments, and is much less verbos

    Edge Detection, Cosmic Strings and the South Pole Telescope

    Full text link
    We develop a method of constraining the cosmic string tension GμG\mu which uses the Canny edge detection algorithm as a means of searching CMB temperature maps for the signature of the Kaiser-Stebbins effect. We test the potential of this method using high resolution, simulated CMB temperature maps. By modeling the future output from the South Pole Telescope project (including anticipated instrumental noise), we find that cosmic strings with Gμ>5.5×108G\mu > 5.5\times10^{-8} could be detected.Comment: 27 pages, 5 figures, reference and minor notes added, discussion of noise expanded, explanation of equation (4) expande

    Pulsar timing arrays and the challenge of massive black hole binary astrophysics

    Full text link
    Pulsar timing arrays (PTAs) are designed to detect gravitational waves (GWs) at nHz frequencies. The expected dominant signal is given by the superposition of all waves emitted by the cosmological population of supermassive black hole (SMBH) binaries. Such superposition creates an incoherent stochastic background, on top of which particularly bright or nearby sources might be individually resolved. In this contribution I describe the properties of the expected GW signal, highlighting its dependence on the overall binary population, the relation between SMBHs and their hosts, and their coupling with the stellar and gaseous environment. I describe the status of current PTA efforts, and prospect of future detection and SMBH binary astrophysics.Comment: 18 pages, 4 figures. To appear in the Proceedings of the 2014 Sant Cugat Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed. C.Sopuerta (Berlin: Springer-Verlag
    corecore