1,507 research outputs found
The Soft X-ray Spectrum from NGC 1068 Observed with LETGS on Chandra
Using the combined spectral and spatial resolving power of the Low Energy
Transmission Grating (LETGS) on board Chandra, we obtain separate spectra from
the bright central source of NGC 1068 (Primary region), and from a fainter
bright spot 4" to the NE (Secondary region). Both spectra are dominated by line
emission from H- and He-like ions of C through S, and from Fe L-shell ions, but
also include narrow radiative recombination continua, indicating that most of
the soft X-ray emission arises in low-temperature (kT few eV) photoionized
plasma. We confirm the conclusions of Kinkhabwala et al. (2002), based on
XMM-Newton RGS observations, that the entire nuclear spectrum can be explained
by recombination/radiative cascade following photoionization, and radiative
decay following photoexcitation, with no evidence for hot, collisionally
ionized plasma. In addition, this model also provides an excellent fit to the
spectrum of the Secondary region, albeit with radial column densities a factor
of three lower, as would be expected given its distance from the source of the
ionizing continuum. The remarkable overlap and kinematical agreement of the
optical and X-ray line emission, coupled with the need for a distribution of
ionization parameter to explain the X-ray spectra, collectively imply the
presence of a distribution of densities (over a few orders of magnitude) at
each radius in the ionization cone. Relative abundances of all elements are
consistent with Solar abundance, except for N, which is 2-3 times Solar. The
long wavelength spectrum beyond 30 A is rich of L-shell transitions of Mg, Si,
S, and Ar, and M-shell transitions of Fe. The velocity dispersion decreases
with increasing ionization parameter, as deduced from these long wavelength
lines and the Fe-L shell lines.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Chandra LETGS and XMM-Newton observations of NGC 4593
In this paper, we analyze spectra of the Seyfert 1 galaxy NGC 4593 obtained
with the Chandra Low Energy Transmission Grating Spectrometer (LETGS), the
Reflection Grating Spectrometer (RGS) and the European Photon Imaging Camera's
(EPIC) onboard of XMM-Newton. The two observations were separated by ~7 months.
In the LETGS spectrum we detect a highly ionized warm absorber corresponding to
an ionization state of 400x10^{-9} W m, visible as a depression at 10-18 \AA.
This depression is formed by multiple weak Fe and Ne lines. A much smaller
column density was found for the lowly ionized warm absorber, corresponding to
xi = 3x10^{-9} W m. However, an intermediate ionization warm absorber is not
detected. For the RGS data the ionization state is hard to constrain. The EPIC
results show a narrow Fe Kalpha line.Comment: 8 pages, 10 figures, accepted for publication in A&
Physical Properties of Asteroid (308635) 2005 YU55 derived from multi-instrument infrared observations during a very close Earth-Approach
The near-Earth asteroid (308635) 2005 YU55 is a potentially hazardous
asteroid which was discovered in 2005 and passed Earth on November 8th 2011 at
0.85 lunar distances. This was the closest known approach by an asteroid of
several hundred metre diameter since 1976 when a similar size object passed at
0.5 lunar distances. We observed 2005 YU55 from ground with a recently
developed mid-IR camera (miniTAO/MAX38) in N- and Q-band and with the
Submillimeter Array (SMA) at 1.3 mm. In addition, we obtained space
observations with Herschel/PACS at 70, 100, and 160 micron. Our thermal
measurements cover a wide range of wavelengths from 8.9 micron to 1.3 mm and
were taken after opposition at phase angles between -97 deg and -18 deg. We
performed a radiometric analysis via a thermophysical model and combined our
derived properties with results from radar, adaptive optics, lightcurve
observations, speckle and auxiliary thermal data. We find that (308635) 2005
YU55 has an almost spherical shape with an effective diameter of 300 to 312 m
and a geometric albedo pV of 0.055 to 0.075. Its spin-axis is oriented towards
celestial directions (lam_ecl, beta_ecl) = (60 deg +/- 30deg, -60 deg +/- 15
deg), which means it has a retrograde sense of rotation. The analysis of all
available data combined revealed a discrepancy with the radar-derived size. Our
radiometric analysis of the thermal data together with the problem to find a
unique rotation period might be connected to a non-principal axis rotation. A
low to intermediate level of surface roughness (r.m.s. of surface slopes in the
range 0.1 - 0.3) is required to explain the available thermal measurements. We
found a thermal inertia in the range 350-800 Jm^-2s^-0.5K^-1, very similar to
the rubble-pile asteroid (25143) Itokawa and indicating a mixture of low
conductivity fine regolith with larger rocks and boulders of high thermal
inertia on the surface.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 10
figure
Public Evidence from Secret Ballots
Elections seem simple---aren't they just counting? But they have a unique,
challenging combination of security and privacy requirements. The stakes are
high; the context is adversarial; the electorate needs to be convinced that the
results are correct; and the secrecy of the ballot must be ensured. And they
have practical constraints: time is of the essence, and voting systems need to
be affordable and maintainable, and usable by voters, election officials, and
pollworkers. It is thus not surprising that voting is a rich research area
spanning theory, applied cryptography, practical systems analysis, usable
security, and statistics. Election integrity involves two key concepts:
convincing evidence that outcomes are correct and privacy, which amounts to
convincing assurance that there is no evidence about how any given person
voted. These are obviously in tension. We examine how current systems walk this
tightrope.Comment: To appear in E-Vote-Id '1
MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy
We analyze the Galactic bulge microlensing event MOA-2003-BLG-37. Although
the Einstein timescale is relatively short, t_e=43 days, the lightcurve
displays deviations consistent with parallax effects due to the Earth's
accelerated motion. We show that the chi^2 surface has four distinct local
minima that are induced by the ``jerk-parallax'' degeneracy, with pairs of
solutions having projected Einstein radii, \tilde r_e = 1.76 AU and 1.28 AU,
respectively. This is the second event displaying such a degeneracy and the
first toward the Galactic bulge. For both events, the jerk-parallax formalism
accurately describes the offsets between the different solutions, giving hope
that when extra solutions exist in future events, they can easily be found.
However, the morphologies of the chi^2 surfaces for the two events are quite
different, implying that much remains to be understood about this degeneracy.Comment: 19 pages, 3 figures, 1 table, ApJ, in press, 1 July 200
- …