7,150 research outputs found

    Network-Assisted Resource Allocation with Quality and Conflict Constraints for V2V Communications

    Get PDF
    The 3rd Generation Partnership Project (3GPP) has recently established in Rel. 14 a network-assisted resource allocation scheme for vehicular broadcast communications. Such novel paradigm is known as vehicle--to--vehicle (V2V) \textit{mode-3} and consists in eNodeBs engaging only in the distribution of sidelink subchannels among vehicles in coverage. Thereupon, without further intervention of the former, vehicles will broadcast their respective signals directly to their counterparts. Because the allotment of subchannels takes place intermittently to reduce signaling, it must primarily be conflict-free in order not to jeopardize the reception of signals. We have identified four pivotal types of allocation requirements that must be guaranteed: one quality of service (QoS) requirement and three conflict conditions which must be precluded in order to preserve reception reliability. The underlying problem is formulated as a maximization of the system sum-capacity with four types of constraints that must be enforced. In addition, we propose a three-stage suboptimal approach that is cast as multiple independent knapsack problems (MIKPs). We compare the two approaches through simulations and show that the latter formulation can attain acceptable performance at lesser complexity

    Poster Abstract: Hierarchical Subchannel Allocation for Mode-3 Vehicle-to-Vehicle Sidelink Communications

    Get PDF
    In V2V Mode-3, eNodeBs assign subchannels to vehicles in order for them to periodically broadcast CAM messages \cite{b2}. A crucial aspect is to ensure that vehicles in the same cluster will broadcast in orthogonal time subchannels\footnote{A subchannel is a time-frequency resource chunk capable of sufficiently conveying a CAM message.} to avoid conflicts. In general, resource/subchannel allocation problems can be represented as weighted bipartite graphs. However, in this scenario there is an additional time orthogonality constraint which cannot be straightforwardly handled by conventional graph matching methods \cite{b3}. Thus, in our approach the mentioned constraint has been taken into account. We also perform the allocation task in a sequential manner based on the constrainedness of each cluster. To illustrate the gist of the problem, in Fig. 1 we show two partially overlapping clusters where a conflict between vehicles V8V_8 and V10V_{10} is generated as the allotted subchannels are in the same subframe

    An analytic model for the transition from decelerated to accelerated cosmic expansion

    Full text link
    We consider the scenario where our observable universe is devised as a dynamical four-dimensional hypersurface embedded in a five-dimensional bulk spacetime, with a large extra dimension, which is the {\it generalization of the flat FRW cosmological metric to five dimensions}. This scenario generates a simple analytical model where different stages of the evolution of the universe are approximated by distinct parameterizations of the {\it same} spacetime. In this model the evolution from decelerated to accelerated expansion can be interpreted as a "first-order" phase transition between two successive stages. The dominant energy condition allows different parts of the universe to evolve, from deceleration to acceleration, at different redshifts within a narrow era. This picture corresponds to the creation of bubbles of new phase, in the middle of the old one, typical of first-order phase transitions. Taking Ωm=0.3\Omega_{m} = 0.3 today, we find that the cross-over from deceleration to acceleration occurs at z11.5z \sim 1-1.5 , regardless of the equation of state in the very early universe. In the case of primordial radiation, the model predicts that the deceleration parameter "jumps" from q+1.5q \sim + 1.5 to q0.4q \sim - 0.4 at z1.17z \sim 1.17. At the present time q=0.55q = - 0.55 and the equation of state of the universe is w=p/ρ0.7w = p/\rho \sim - 0.7 , in agreement with observations and some theoretical predictions.Comment: The abstract and introduction are improved and the discussion section is expanded. A number of references are adde

    Poster: Resource Allocation with Conflict Resolution for Vehicular Sidelink Broadcast Communications

    Get PDF
    In this paper we present a graph-based resource allocation scheme for sidelink broadcast V2V communications. Harnessing available information on geographical position of vehicles and spectrum resources utilization, eNodeBs are capable of allotting the same set of sidelink resources to different vehicles distributed among several communications clusters. Within a communications cluster, it is crucial to prevent time-domain allocation conflicts since vehicles cannot transmit and receive simultaneously, i.e., they must transmit in orthogonal time resources. In this research, we present a solution based on a bipartite graph, where vehicles and spectrum resources are represented by vertices whereas the edges represent the achievable rate in each resource based on the SINR that each vehicle perceives. The aforementioned time orthogonality constraint can be approached by aggregating conflicting vertices into macro-vertices which, in addition, reduces the search complexity. We show mathematically and through simulations that the proposed approach yields an optimal solution. In addition, we provide simulations showing that the proposed method outperforms other competing approaches, specially in scenarios with high vehicular density.Comment: arXiv admin note: substantial text overlap with arXiv:1805.0655

    Wave-like Solutions for Bianchi type-I cosmologies in 5D

    Full text link
    We derive exact solutions to the vacuum Einstein field equations in 5D, under the assumption that (i) the line element in 5D possesses self-similar symmetry, in the classical understanding of Sedov, Taub and Zeldovich, and that (ii) the metric tensor is diagonal and independent of the coordinates for ordinary 3D space. These assumptions lead to three different types of self-similarity in 5D: homothetic, conformal and "wave-like". In this work we present the most general wave-like solutions to the 5D field equations. Using the standard technique based on Campbell's theorem, they generate a large number of anisotropic cosmological models of Bianchi type-I, which can be applied to our universe after the big-bang, when anisotropies could have played an important role. We present a complete review of all possible cases of self-similar anisotropic cosmologies in 5D. Our analysis extends a number of previous studies on wave-like solutions in 5D with spatial spherical symmetry

    Lorentz violation and the speed of gravitational waves in brane-worlds

    Get PDF
    Lorentz violation in a brane-world scenario is presented and used to obtain a relationship between the speed of gravitational waves in the bulk and that on the brane. Lorentz violating effects would manifest themselves in gravitational waves travelling with a greater speed in the bulk than on the brane and this effect is independent of the signature of the extra dimension.Comment: 8 pages, to appear in PL

    Confinement and stability of the motion of test particles in thick branes

    Full text link
    We consider the motion of test particles in a thick brane version of Randall-Sundrum type II model. It is known that gravity alone cannot explain the confinement of test particles in this kind of brane. In this paper we show that a stable confinement in a domain wall is possible by admitting a direct interaction between test particles and a scalar field. This interaction is implemented by a modification of the Lagrangian of the particle which is inspired by a Yukawa-type interaction between fermions and scalar fields.Comment: 1 figure. Extended analysis to treat general thick branes RSII-type. Added reference
    corecore