492 research outputs found
Computing with Memristor-based Nonlinear Oscillators
Among the recent disruptive technologies, volatile/nonvolatile memory-resistor (memristor) has attracted the researchers' attention as a fundamental computation element. It has been experimentally shown that memristive elements can emulate synaptic dynamics and are even capable of supporting spike timing dependent plasticity (STDP), an important adaptation rule for neuromorphic computing systems. The overall goal of this work is to provide an unconventional computing platform exploiting memristor-based nonlinear oscillators described by means of phase deviation equations. Experimental results show that the approach significantly outperforms conventional architectures used for pattern recognition tasks
Strong enhancement of extremely energetic proton production in central heavy ion collisions at intermediate energy
The energetic proton emission has been investigated as a function of the
reaction centrality for the system 58Ni + 58Ni at 30A MeV. Extremely energetic
protons (EpNN > 130 MeV) were measured and their multiplicity is found to
increase almost quadratically with the number of participant nucleons thus
indicating the onset of a mechanism beyond one and two-body dynamics.Comment: 5 pages, 2 figures, submitted to Physical Review Letter
Covid-19 in children: Expressions of type i/ii/iii interferons, trim28, setdb1, and endogenous retroviruses in mild and severe cases
Children with the new coronavirus disease 2019 (COVID-19) have milder symptoms and a better prognosis than adult patients. Several investigations assessed type I, II, and III interferon (IFN) signatures in SARS-CoV-2 infected adults, however no data are available for pediatric patients. TRIM28 and SETDB1 regulate the transcription of multiple genes involved in the immune response as well as of human endogenous retroviruses (HERVs). Exogenous viral infections can trigger the activation of HERVs, which in turn can induce inflammatory and immune reactions. Despite the potential cross-talks between SARS-CoV-2 infection and TRIM28, SETDB1, and HERVs, information on their expressions in COVID-19 patients is lacking. We assessed, through a PCR real time Taqman amplification assay, the transcription levels of six IFN-I stimulated genes, IFN-II and three of its sensitive genes, three IFN-lIIs, as well as of TRIM28, SETDB1, pol genes of HERV-H, -K, and -W families, and of env genes of Syncytin (SYN)1, SYN2, and multiple sclerosis-associated retrovirus (MRSV) in peripheral blood from COVID-19 children and in control uninfected subjects. Higher expression levels of IFN-I and IFN-II inducible genes were observed in 36 COVID-19 children with mild or moderate disease as compared to uninfected controls, whereas their concentrations decreased in 17 children with severe disease and in 11 with multisystem inflammatory syndrome (MIS-C). Similar findings were found for the expression of TRIM-28, SETDB1, and every HERV gene. Positive correlations emerged between the transcriptional levels of type I and II IFNs, TRIM28, SETDB1, and HERVs in COVID-19 patients. IFN-III expressions were comparable in each group of subjects. This preserved induction of IFN-λs could contribute to the better control of the infection in children as compared to adults, in whom IFN-III deficiency has been reported. The upregulation of IFN-I, IFN-II, TRIM28, SETDB1, and HERVs in children with mild symptoms, their declines in severe cases or with MIS-C, and the positive correlations of their transcription in SARS-CoV-2-infected children suggest that they may play important roles in conditioning the evolution of the infection
Stabilization of linear carbon structures in a solid Ag nanoparticle assembly
Linear sp carbon nanostructures are gathering interest for the physical
properties of one-dimensional (1D) systems. At present, the main obstacle to
the synthesis and study of these systems is their instability. Here we present
a simple method to obtain a solid system where linear sp chains (i.e. polyynes)
in a silver nanoparticle assembly display a long term stability at ambient
conditions. The presence and the behavior of linear carbon is investigated by
Surface Enhanced Raman Scattering (SERS) exploiting the plasmon resonance of
the silver nanoparticles assembly. This model system opens the possibility to
investigate an intriguing form of carbon nanostructures
Correlations in Nuclear Arrhenius-Type Plots
Arrhenius-type plots for multifragmentation process, defined as the
transverse energy dependence of the single-fragment emission-probability,
-ln(p_{b}) vs 1/sqrt(E_{t}), have been studied by examining the relationship of
the parameters p_{b} and E_{t} to the intermediate-mass fragment multiplicity
. The linearity of these plots reflects the correlation of the fragment
multiplicity with the transverse energy. These plots may not provide thermal
scaling information about fragment production as previously suggested.Comment: 12 pages, Latex, 3 Postscript figures include
Correction: Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome
In table 3, the correlation coefficient between peak plasma cortisol and mRS at 3 months (column 4, row 5), should read 0.48, not 0 [1]
Size and asymmetry of the reaction entrance channel: influence on the probability of neck production
The results of experiments performed to investigate the Ni+Al, Ni+Ni, Ni+Ag
reactions at 30 MeV/nucleon are presented. From the study of dissipative
midperipheral collisions, it has been possible to detect events in which
Intermediate Mass Fragments (IMF) production takes place. The decay of a
quasi-projectile has been identified; its excitation energy leads to a
multifragmentation totally described in terms of a statistical disassembly of a
thermalized system (T4 MeV, E4 MeV/nucleon). Moreover, for
the systems Ni+Ni, Ni+Ag, in the same nuclear reaction, a source with velocity
intermediate between that of the quasi-projectile and that of the quasi-target,
emitting IMF, is observed. The fragments produced by this source are more
neutron rich than the average matter of the overall system, and have a charge
distribution different, with respect to those statistically emitted from the
quasi-projectile. The above features can be considered as a signature of the
dynamical origin of the midvelocity emission. The results of this analysis show
that IMF can be produced via different mechanisms simultaneously present within
the same collision. Moreover, once fixed the characteristics of the
quasi-projectile in the three considered reactions (in size, excitation energy
and temperature), one observes that the probability of a partner IMF production
via dynamical mechanism has a threshold (not present in the Ni+Al case) and
increases with the size of the target nucleus.Comment: 16 pages, 7 figures, accepted for publication on Nuclear Physics
Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral Ni+Ni collisions at 30 MeV/nucleon
The reaction at 30 MeV/nucleon has been experimentally
investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali
del Sud. In midperipheral collisions the production of massive fragments
(4Z12), consistent with the statistical fragmentation of the
projectile-like residue and the dynamical formation of a neck, joining
projectile-like and target-like residues, has been observed. The fragments
coming from these different processes differ both in charge distribution and
isotopic composition. In particular it is shown that these mechanisms leading
to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction
The baboon (Papio anubis) extracranial carotid artery: An anatomical guide for endovascular experimentation
BACKGROUND: As novel endovascular strategies are developed for treating neurological disease, there is an increasing need to evaluate these techniques in relevant preclinical models. The use of non-human primates is especially critical given their structural and physiological homology with humans. In order to conduct primate endovascular studies, a comprehensive understanding of the carotid anatomy is necessary. We therefore performed a detailed examination of the vessel lengths, lumen diameters and angles of origin of the baboon extracranial carotid system. METHODS: We characterized the extracranial carotid system often male baboons (Papio anubis, range 15.1–28.4 kg) by early post-mortem dissection. Photographic documentation of vessel lengths, lumen diameters, and angles of origin were measured for each segment of the carotid bilaterally. RESULTS: The common carotid arteries averaged 94.7 ± 1.7 mm (left) and 87.1 ± 1.6 mm (right) in length. The average minimal common carotid lumen diameters were 3.0 ± 0.3 mm (left) and 2.9 ± 0.2 mm (right). Each animal had a common brachiocephalic artery arising from the aorta which bifurcated into the left common carotid artery and right braciocephalic artery after 21.5 ± 1.6 mm. The vascular anatomy was found to be consistent among animals despite a wide range of animal weights. CONCLUSIONS: The consistency in the Papio anubis extracranial carotid system may promote the use of this species in the preclinical investigation of neuro-interventional therapies
Light harvesting of CdSe/CdS quantum dots coated with β-cyclodextrin based host–guest species through resonant energy transfer from the guests
Films of nano-hybrids based on red emitting CdSe/CdS QDs functionalized with perthiolated \u3b2-cyclodextrin hosting a green emitting nitrobenzoxadiazole derivative show emission harvested by the host\u2013guest organic system through resonant energy transfer from the organic host\u2013guest species to the QD
- …