20 research outputs found

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles

    No full text
    Small interfering RNAs (siRNAs) are capable of targeting and destroying specific mRNAs, making them particularly suited to the treatment of neurodegenerative conditions such as Huntington's Disease where the production of abnormal proteins results in a gain-of-function phenotype. Although a variety of nanoparticle formulations are currently under development as siRNA delivery systems, application of these technologies has been limited by their high cytotoxicity, low drug loading capacity and release, and inability to penetrate cell membranes. Layered double hydroxide (LDH) nanoparticles are now emerging as a potential new drug delivery system as they exhibit low cytotoxicity and are highly biocompatible. Here we present the first study investigating LDH delivery of siRNAs to primary cultured neurons. We show that internalization by neurons is rapid, dose-dependent and saturable, and markedly more efficient than in other cell types. We demonstrate that siRNA-LDH complexes are internalized by clathrin-dependent endocytosis at the cell body and in neurites, with subsequent retrograde transport to the cell body followed by efficient release into the cytoplasm. Finally we show that LDH mediated siRNA delivery effectively silences neuronal gene expression. This study therefore confirms the potential of LDH nanoparticles as a drug delivery system for patients suffering from neurodegenerative disease. © 2010 Elsevier Ltd
    corecore