16 research outputs found

    MYB suppresses differentiation and apoptosis of human breast cancer cells

    Get PDF
    Introduction: MYB is highly expressed in estrogen receptor positive (ER + ve) breast tumours and tumour cell lines. We recently demonstrated that MYB is essential for the proliferation of ER + ve breast cancer cells, and have now investigated its role in mammary epithelial differentiation.Methods: MCF-7 breast cancer cells were treated with sodium butyrate, vitamin E succinate or 12-O-tetradecanoylphorbol-13-acetate to induce differentiation as measured by Nile Red staining of lipid droplets and β-casein expression. The non-tumorigenic murine mammary epithelial cell (MEC) line, HC11, was induced to differentiate with lactogenic hormones. MYB levels were manipulated by inducible lentiviral shRNA-mediated knockdown and retroviral overexpression.Results: We found that MYB expression decreases following chemically-induced differentiation of the human breast cancer cell line MCF-7, and hormonally-induced differentiation of a non-tumorigenic murine mammary epithelial cell (MEC) line, HC11. We also found that shRNA-mediated MYB knockdown initiated differentiation of breast cancer cells, and greatly sensitised them to the differentiative and pro-apoptotic effects of differentiation-inducing agents (DIAs). Sensitisation to the pro-apoptotic effects DIAs is mediated by decreased expression of BCL2, which we show here is a direct MYB target in breast cancer cells. Conversely, enforced expression of MYB resulted in the cells remaining in an undifferentiated state, with concomitant suppression of apoptosis, in the presence of DIAs.Conclusions: Taken together, these data imply that MYB function is critical in regulating the balance between proliferation, differentiation, and apoptosis in MECs. Moreover, our findings suggest MYB may be a viable therapeutic target in breast cancer and suggest specific approaches for exploiting this possibility

    The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes

    Get PDF
    Transcription is one of the most fundamental nuclear functions and is an enzyme complex-mediated reaction that converts DNA sequences into mRNA. Analyzing DNA sequences of 5′-flanking regions of several human genes that respond to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in HL-60 cells, we have identified that the ets (GGAA) motifs are duplicated, overlapped, or clustered within a 500-bp distance from the most 5′-upstream region of the cDNA. Multiple protein factors including Ets family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ets motifs play important roles in regulation of various promoters. Here, we propose a molecular mechanism, defined by the presence of duplication and multiplication of the GGAA motifs, that is responsible for the initiation of transcription of several genes and for the recruitment of binding proteins to the transcription start site (TSS) of TATA-less promoters
    corecore