1,943 research outputs found
Constraints and Reality Conditions in the Ashtekar Formulation of General Relativity
We show how to treat the constraints and reality conditions in the
-ADM (Ashtekar) formulation of general relativity, for the case of a
vacuum spacetime with a cosmological constant. We clarify the difference
between the reality conditions on the metric and on the triad. Assuming the
triad reality condition, we find a new variable, allowing us to solve the gauge
constraint equations and the reality conditions simultaneously.Comment: LaTeX file, 12 pages, no figures; to appear in Classical and Quantum
Gravit
Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system
Several numerical relativity groups are using a modified ADM formulation for
their simulations, which was developed by Nakamura et al (and widely cited as
Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is
shown to be more stable than the standard ADM formulation in many cases, and
there have been many attempts to explain why this re-formulation has such an
advantage. We try to explain the background mechanism of the BSSN equations by
using eigenvalue analysis of constraint propagation equations. This analysis
has been applied and has succeeded in explaining other systems in our series of
works. We derive the full set of the constraint propagation equations, and
study it in the flat background space-time. We carefully examine how the
replacements and adjustments in the equations change the propagation structure
of the constraints, i.e. whether violation of constraints (if it exists) will
decay or propagate away. We conclude that the better stability of the BSSN
system is obtained by their adjustments in the equations, and that the
combination of the adjustments is in a good balance, i.e. a lack of their
adjustments might fail to obtain the present stability. We further propose
other adjustments to the equations, which may offer more stable features than
the current BSSN equations.Comment: 10 pages, RevTeX4, added related discussion to gr-qc/0209106, the
version to appear in Phys. Rev.
Novel Pressure Induced Structural Phase Transition in AgSbTe
We report a novel high pressure structural sequence for the functionally
graded thermoelectric, narrow band gap semiconductor AgSbTe, using angle
dispersive x-ray diffraction in a diamond anvil cell with synchrotron radiation
at room temperature. The compound undergoes a B1 to B2 transition; the
transition proceeds through an intermediate amorphous phase found between 17-26
GPa that is quenchable down to ambient conditions. The pressure induced
structural transition observed in this compound is the first of its type
reported in this ternary cubic family, and it is new for the B1-B2 transition
pathway reported to date. Density Functional Theory (DFT) calculations
performed for the B1 and B2 phases are in good agreement with the experimental
results.Comment: 4 pages, 3 figure
Reality conditions for Ashtekar variables as Dirac constraints
We show that the reality conditions to be imposed on Ashtekar variables to
recover real gravity can be implemented as second class constraints a la Dirac.
Thus, counting gravitational degrees of freedom follows accordingly. Some
constraints of the real theory turn out to be non-polynomial, regardless of the
form, polynomial or non-polynomial, taken for the reality conditions. We
comment upon the compatibility of our approach with the recently proposed Wick
transform point of view, as well as on some alternatives for dealing with such
second class constraints.Comment: 16 pages, plain LaTeX, submitted to Class. Quant. Grav. E-mail:
[email protected]
Neutron knockout of 12Be populating neutron-unbound states in 11Be
Neutron-unbound resonant states of 11Be were populated in neutron knock-out
reactions from 12Be and identified by 10Be-n coincidence measurements. A
resonance in the decay-energy spectrum at 80(2) keV was attributed to a highly
excited unbound state in 11Be at 3.949(2) MeV decaying to the 2+ excited state
in 10Be. A knockout cross section of 15(3) mb was inferred for this 3.949(2)
MeV state suggesting a spectroscopic factor near unity for this 0p3/2- level,
consistent with the detailed shell model calculations.Comment: 5 pages, 2 figures \pacs{29.38.Db, 29.30.Hs, 24.50.+g, 21.10.Pc,
21.10.Hw, 27.20.+n} \keywords{neutron decay spectroscopy, neutron-unbound
states in 11Be
Shell structure underlying the evolution of quadrupole collectivity in S-38 and S-40 probed by transient-field g-factor measurements on fast radioactive beams
The shell structure underlying shape changes in neutron-rich nuclei between
N=20 and N=28 has been investigated by a novel application of the transient
field technique to measure the first-excited state g factors in S-38 and S-40
produced as fast radioactive beams. Details of the new methodology are
presented. In both S-38 and S-40 there is a fine balance between the proton and
neutron contributions to the magnetic moments. Shell model calculations which
describe the level schemes and quadrupole properties of these nuclei also give
a satisfactory explanation of the g factors. In S-38 the g factor is extremely
sensitive to the occupation of the neutron p3/2 orbit above the N=28 shell gap
as occupation of this orbit strongly affects the proton configuration. The g
factor of deformed S-40 does not resemble that of a conventional collective
nucleus because spin contributions are more important than usual.Comment: 10 pages, 36 figures, accepted for publication in Physical Review
Algebraic stability analysis of constraint propagation
The divergence of the constraint quantities is a major problem in
computational gravity today. Apparently, there are two sources for constraint
violations. The use of boundary conditions which are not compatible with the
constraint equations inadvertently leads to 'constraint violating modes'
propagating into the computational domain from the boundary. The other source
for constraint violation is intrinsic. It is already present in the initial
value problem, i.e. even when no boundary conditions have to be specified. Its
origin is due to the instability of the constraint surface in the phase space
of initial conditions for the time evolution equations. In this paper, we
present a technique to study in detail how this instability depends on gauge
parameters. We demonstrate this for the influence of the choice of the time
foliation in context of the Weyl system. This system is the essential
hyperbolic part in various formulations of the Einstein equations.Comment: 25 pages, 5 figures; v2: small additions, new reference, publication
number, classification and keywords added, address fixed; v3: update to match
journal versio
Probing shell structure and shape changes in neutron-rich sulfur isotopes through transient-field g factor measurements on fast radioactive beams of 38S and 40S
The shell structure underlying shape changes in neutron-rich nuclei near N=28
has been investigated by a novel application of the transient field technique
to measure the first-excited state g factors in 38S and 40S produced as fast
radioactive beams. There is a fine balance between proton and neutron
contributions to the magnetic moments in both nuclei. The g factor of deformed
40S does not resemble that of a conventional collective nucleus because spin
contributions are more important than usual.Comment: 10 pages, 6 figures, accepted in PR
Availability of Cognitive Resources in Early Life Predicts Transitions Between Cognitive States in Middle and Older Adults From Europe
BACKGROUND AND OBJECTIVES: The existing literature highlights the importance of reading books in middle-to-older adulthood for cognitive functioning; very few studies, however, have examined the importance of childhood cognitive resources for cognitive outcomes later in life.RESEARCH DESIGN AND METHODS: Using data from 11 countries included in the Survey of Health, Ageing, and Retirement in Europe (SHARE) data set ( N â
=â
32,783), multistate survival models (MSMs) were fit to examine the importance of access to reading material in childhood on transitions through cognitive status categories (no cognitive impairment and impaired cognitive functioning) and death. Additionally, using the transition probabilities estimated by the MSMs, we estimated the remaining years of life without cognitive impairment and total longevity. All models were fit individually in each country, as well as within the pooled SHARE sample. RESULTS: Adjusting for age, sex, education, and childhood socioeconomic status, the overall pooled estimate indicated that access to more books at age 10 was associated with a decreased risk of developing cognitive impairment (adjusted hazard ratioâ
=â
0.79, confidence interval: 0.76-0.82). Access to childhood books was not associated with risk of transitioning from normal cognitive functioning to death, or from cognitive impairment to death. Total longevity was similar between participants reporting high (+1 standard deviation [ SD]) and low (-1 SD) number of books in the childhood home; however, individuals with more access to childhood books lived a greater proportion of this time without cognitive impairment. DISCUSSION AND IMPLICATIONS: Findings suggest that access to cognitive resources in childhood is protective for cognitive aging processes in older adulthood.</p
- âŠ