12,732 research outputs found

    The nrMSSU(5) and universality of soft masses

    Full text link
    We discuss the problem of universality of the soft, supersymmetry-breaking terms in the minimal supersymmetric SU(5) model (MSSU(5)) completed with flavor-dependent nonrenormalizable operators (NROs), or nrMSSU(5). These are exploited to correct the wrong fermion spectrum and to slow down the too-fast decay rate of the proton that the MSSU(5) model predicts. In general, the presence of such operators in the superpotential and K\"ahler potential gives rise to tree-level flavor- and CP-violating entries in the sfermion mass matrices at the cutoff scale, even when the mediation of supersymmetry (SUSY) breaking is generation and field-type independent. We identify the conditions under which such terms can be avoided.Comment: 4 pages, LateX, to appear in the proceedings of SUSY09, Boston, MA, USA, 5-10 June 200

    Low scale gravity mediation with warped extra dimension and collider phenomenology on the hidden sector

    Get PDF
    We propose a scenario of gravity mediated supersymmetry breaking (gravity mediation) in a supersymmetric Randall-Sundrum model. In our setup, both of the visible sector and the hidden sector co-exist on the infrared (IR) brane. We introduce the Polonyi model as a simple hidden sector. Due to the warped metric, the effective cutoff scale on the IR brane is ``warped down'', so that the gravity mediation occurs at a low scale. As a result, the gravitino is naturally the lightest superpartner (LSP) and contact interactions between the hidden and the visible sector fields become stronger. We address phenomenologies for various IR cutoff scales. In particular, we investigate collider phenomenology involving a scalar field (Polonyi field) in the hidden sector for the case with the IR cutoff around 10 TeV. We find a possibility that the hidden sector scalar can be produced at the LHC and the International Linear Collider (ILC). Interestingly, the scalar behaves like the Higgs boson of the standard model in the production process, while its decay process is quite different and, once produced, it will provide us with a very clean signature. The hidden sector may be no longer hidden.Comment: 18 pages, 4 figures. typographical errors have been corrected and a few new comments have been adde

    Triatomic continuum resonances for large negative scattering lengths

    Full text link
    We study triatomic systems in the regime of large negative scattering lengths which may be more favorable for the formation of condensed trimers in trapped ultracold monoatomic gases as the competition with the weakly bound dimers is absent. The manipulation of the scattering length can turn an excited weakly bound Efimov trimer into a continuum resonance. Its energy and width are described by universal scaling functions written in terms of the scattering length and the binding energy, B3B_3, of the shallowest triatomic molecule. For a1<0.0297mB3/2a^{-1}<-0.0297 \sqrt{m B_3/\hbar^2} the excited Efimov state turns into a continuum resonance.Comment: 4 pages, 4 figure

    Universality of three-body systems in 2D: parametrization of the bound states energies

    Full text link
    Universal properties of mass-imbalanced three-body systems in 2D are studied using zero-range interactions in momentum space. The dependence of the three-particle binding energy on the parameters (masses and two-body energies) is highly non-trivial even in the simplest case of two identical particles and a distinct one. This dependence is parametrized for ground and excited states in terms of {\itshape supercircles} functions in the most general case of three distinguishable particles.Comment: 3 pages, 1 figure, published versio
    corecore