6,290 research outputs found

    Efficient electronic entanglement concentration assisted with single mobile electron

    Full text link
    We present an efficient entanglement concentration protocol (ECP) for mobile electrons with charge detection. This protocol is quite different from other ECPs for one can obtain a maximally entangled pair from a pair of less-entangled state and a single mobile electron with a certain probability. With the help of charge detection, it can be repeated to reach a higher success probability. It also does not need to know the coefficient of the original less-entangled states. All these advantages may make this protocol useful in current distributed quantum information processing.Comment: 6pages, 3figure

    Theory of High-Tc Superconductivity: Accurate Predictions of Tc

    Full text link
    The superconducting transition temperatures of high-Tc compounds based on copper, iron, ruthenium and certain organic molecules are discovered to be dependent on bond lengths, ionic valences, and Coulomb coupling between electronic bands in adjacent, spatially separated layers [1]. Optimal transition temperature, denoted as T_c0, is given by the universal expression kBTc0=e2Λ/ζk_BT_c0 = e^2 \Lambda / \ell\zeta; \ell is the spacing between interacting charges within the layers, \zeta is the distance between interacting layers and \Lambda is a universal constant, equal to about twice the reduced electron Compton wavelength (suggesting that Compton scattering plays a role in pairing). Non-optimum compounds in which sample degradation is evident typically exhibit Tc < T_c0. For the 31+ optimum compounds tested, the theoretical and experimental T_c0 agree statistically to within +/- 1.4 K. The elemental high Tc building block comprises two adjacent and spatially separated charge layers; the factor e^2/\zeta arises from Coulomb forces between them. The theoretical charge structure representing a room-temperature superconductor is also presented.Comment: 7 pages 5 references, 6 figures 1 tabl

    Pressure-induced superconductivity in Eu0.5_{0.5}Ca0.5_{0.5}Fe2_2As2_2 : FeAs-based superconductivity hidden by antiferromagnetism of Eu sublattice

    Full text link
    To clarify superconductivity in EuFe2As2 hidden by antiferromagnetism of Eu2+, we investigated a Ca-substituted sample, Eu0.5Ca0.5Fe2As2, under high pressure. For ambient pressure, the sample exhibits a spin-density-wave (SDW) transition at TSDW = 191 K and antiferromagnetic order at TN = 4 K, but no evidence of superconductivity down to 2 K. The Ca-substitution certainly weakens the antiferromagnetism. With increasing pressure, TSDW shifts to lower temperature and becomes more unclear. Above 1.27 GPa, pressure-induced superconductivity with zero resistivity is observed at around Tc = 20 K. At 2.14 GPa, Tc reaches a maximum value of 24 K and the superconducting transition becomes the sharpest. These features of emergence of the superconductivity are qualitatively similar to those observed in AFe2As2 (A = Ba, Ca).Comment: 4 pages, 4 figure

    Crystallographic Phase Transition and High-Tc Superconductivity in LaFeAsO:F

    Full text link
    Undoped LaFeAsO, parent compound of the newly found high-Tc superconductor, exhibits a sharp decrease in the temperature-dependent resistivity at ~160 K. The anomaly can be suppressed by F doping and the superconductivity appears correspondingly, suggesting a close associate of the anomaly with the superconductivity. We examined the crystal structures, magnetic properties and superconductivity of undoped (normal conductor) and 14 at.% F-doped LaFeAsO (Tc = 20 K) by synchrotron X-ray diffraction, DC magnetic measurements, and ab initio calculations to demonstrate that the anomaly is associated with a phase transition from tetragonal (P4/nmm) to orthorhombic (Cmma) phases at ~160 K as well as an antiferromagnetic transition at ~140 K. These transitions can be explained by spin configuration-dependent potential energy surfaces derived from the ab initio calculations. The suppression of the transitions is ascribed to interrelated effects of geometric and electronic structural changes due to doping by F- ions.Comment: 22 pages, 8 figures, 2 tables, Supplementary information is included at the end of the document, accepted for publication in Supercond. Sci. Techno

    Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors

    Full text link
    In view of the recent experimental facts in the iron-pnictides, we make a proposal that the itinerant electrons and local moments are simultaneously present in such multiband materials. We study a minimal model composed of coupled itinerant electrons and local moments to illustrate how a consistent explanation of the experimental measurements can be obtained in the leading order approximation. In this mean-field approach, the spin-density-wave (SDW) order and superconducting pairing of the itinerant electrons are not directly driven by the Fermi surface nesting, but are mainly induced by their coupling to the local moments. The presence of the local moments as independent degrees of freedom naturally provides strong pairing strength for superconductivity and also explains the normal-state linear-temperature magnetic susceptibility above the SDW transition temperature. We show that this simple model is supported by various anomalous magnetic properties and isotope effect which are in quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio

    Measurement of the branching fractions of psi(2S) -> 3(pi+pi-) and J/psi -> 2(pi+pi-)

    Full text link
    Using data samples collected at sqrt(s) = 3.686GeV and 3.650GeV by the BESII detector at the BEPC, the branching fraction of psi(2S) -> 3(pi+pi-) is measured to be [4.83 +- 0.38(stat) +- 0.69(syst)] x 10^-4, and the relative branching fraction of J/psi -> 2(pi+pi-) to that of J/psi -> mu+mu- is measured to be [5.86 +- 0.19(stat) +- 0.39(syst)]% via psi(2S) -> (pi+pi-)J/psi, J/psi -> 2(pi+pi-). The electromagnetic form factor of 3(pi+pi-) is determined to be 0.21 +- 0.02 and 0.20 +- 0.01 at sqrt(s) = 3.686GeV and 3.650GeV, respectively.Comment: 17pages, 7 figures, submitted to Phys. Rev.

    Partial Wave Analysis of χc0π+πK+K\chi_{c0}\to\pi^+\pi^-K^+K^-

    Full text link
    A partial wave analysis of χc0π+πK+K\chi_{c0}\to\pi^+\pi^-K^+K^- in ψ(2S)γχc0\psi(2S)\to\gamma\chi_{c0} decay is presented using a sample of 14 million ψ(2S)\psi(2S) events accumulated by the BES II detector. The data are fitted to the sum of relativistic covariant tensor amplitudes for intermediate resonant decay modes. From the fit, significant contributions to χc0\chi_{c0} decays from the channels f0(980)f0(980)f_0(980)f_0(980), f0(980)f0(2200)f_0(980)f_0(2200), f0(1370)f0(1710)f_0(1370)f_0(1710), K(892)0Kˉ(892)0K^*(892)^0\bar K^*(892)^0, K0(1430)Kˉ0(1430)K^*_0(1430)\bar K^*_0(1430), K0(1430)Kˉ2(1430)+c.c.K^*_0(1430)\bar K^*_2(1430) + c.c., and K1(1270)KK_1(1270)K are found. Flavor-SU(3)-violating K1(1270)K1(1400)K_1(1270)-K_1(1400) asymmetry is observed. Values obtained for the masses and widths of the resonances f0(1710)f_0(1710), f0(2200)f_0(2200), f0(1370)f_0(1370), and K0(1430)K^*_0(1430) are presented.Comment: 16 pages, 9 figures, and 4 table

    Measurement of the chi_{c2} Polarization in psi(2S) to gamma chi_{c2}

    Full text link
    The polarization of the chi_{c2} produced in psi(2S) decays into gamma chi_{c2} is measured using a sample of 14*10^6 psi(2S) events collected by BESII at the BEPC. A fit to the chi_{c2} production and decay angular distributions in psi(2S) to gamma chi_{c2}, chi_{c2} to pi pi and KK yields values x=A_1/A_0=2.08+/-0.44 and y=A_2/A_0=3.03 +/-0.66, with a correlation rho=0.92 between them, where A_{0,1,2} are the chi_{c2} helicity amplitudes. The measurement agrees with a pure E1 transition, and M2 and E3 contributions do not differ significantly from zero.Comment: 6 pages, 4 figures, 1 tabl

    Measurements of J/psi decays into phi pi^0, phi eta, and phi eta^prime

    Full text link
    Based on 5.8x10^7 J/psi events detected in BESII, the branching fractions of J/psi--> phi eta and phi eta^prime are measured for different eta and eta^prime decay modes. The results are significantly higher than previous measurements. An upper limit on B(J/psi--> phi pi^0) is also obtained.Comment: 9 pages, 10 figure

    Search for psi(3770)\ra\rho\pi at the BESII detector at the Beijing Electron-Positron Collider

    Full text link
    Non-DDˉD\bar{D} decay \psppto \rhopi is searched for using a data sample of (17.3±0.5)pb1(17.3\pm 0.5) pb^{-1} taken at the center-of-mass energy of 3.773 GeV by the BESII detector at the BEPC. No \rhopi signal is observed, and the upper limit of the cross section is measured to be \sigma(\EETO \rhopi)<6.0 pb at 90% C. L. Considering the interference between the continuum amplitude and the \pspp resonance amplitude, the branching fraction of \pspp decays to ρπ\rho\pi is determined to be \BR(\pspp\ra\rho\pi)\in(6.0\times10^{-6}, 2.4\times10^{-3}) at 90% C. L. This is in agreement with the prediction of the SS- and DD-wave mixing scheme of the charmonium states for solving the ``\rhopi puzzle'' between \jpsi and \psp decays.Comment: 15 pages, 5 figure
    corecore