2,160 research outputs found
Solar neutrino interactions: Using charged currents at SNO to tell neutral currents at Super-Kamiokande
In the presence of flavor oscillations, muon and tau neutrinos can contribute
to the Super-Kamiokande (SK) solar neutrino signal through the neutral current
process \nu_{\mu,\tau} e^{-}\to \nu_{\mu,\tau} e^{-}. We show how to separate
the \nu_e and \nu_{\mu,\tau} event rates in SK in a model independent way, by
using the rate of the charged current process \nu_e d \to p p e^{-} from the
Sudbury Neutrino Observatory (SNO) experiment, with an appropriate choice of
the SK and SNO energy thresholds. Under the additional hypothesis of no
oscillations into sterile states, we also show how to determine the absolute
^{8}B neutrino flux from the same data set, independently of the \nu_e survival
probability.Comment: 14 pages (RevTeX), incl. 3 figures (epsf), submitted to Phys. ReV.
A high flux source of cold strontium atoms
We describe an experimental apparatus capable of achieving a high loading
rate of strontium atoms in a magneto-optical trap operating in a high vacuum
environment. A key innovation of this setup is a two dimensional
magneto-optical trap deflector located after a Zeeman slower. We find a loading
rate of 6x10^9/s whereas the lifetime of the magnetically trapped atoms in the
3P2 state is 54s.Comment: 12 pages, 16 figure
Observations of Spontaneous Raman Scattering in Silicon Slow-light Photonic Crystal Waveguides
We report the observations of spontaneous Raman scattering in silicon
photonic crystal waveguides. Continuous-wave measurements of Stokes emission
for both wavelength and power dependence is reported in single line-defect
waveguides in hexagonal lattice photonic crystal silicon membranes. By
utilizing the Bragg gap edge dispersion of the TM-like mode for pump
enhancement and the TE-like fundamental mode-onset for Stokes enhancement, the
Stokes emission was observed to increase by up to five times in the region of
slow group velocity. The results show explicit nonlinear enhancement in a
silicon photonic crystal slow-light waveguide device.Comment: 12 pages, 4 figure
Higgs particle detection using jets
We study the possibility of detecting the Higgs boson in the intermediate
mass range via its two jet channel. We consider only Higgs bosons produced in
association with a pair. Both and are required to
decay semileptonically to reduce the QCD background. The signal is compared
with the main background, jets, after appropriate cuts. A
sizable signal above background is seen in our simulation at the parton level.
Use of the channel with decaying to is suggested for
eliminating theoretical uncertainties in determining the signal.Comment: 10 pages, Fig.1 a,b,c,d(surve on request), plain tex, PVAM-HEP-93-
Nonet Symmetry and Two-Body Decays of Charmed Mesons
The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is
studied in the context of nonet symmetry. We have found that it is badly broken
in the PP channels and in the P sector of the PV channels as expected from the
non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also
found that nonet symmetry does not describe the data well. We have found that
this discrepancy cannot be attributed entirely to SU(3) breaking at the usual
level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be
very badly broken. The possibility of resolving the problem in the future is
also discussed.Comment: 9 pages, UTAPHY-HEP-
Quark Delocalization, Color Screening, and Nuclear Intermediate Range Attraction
We consider the effect of including quark delocalization and color screening,
in the nonrelativistic quark cluster model, on baryon-baryon potentials and
phase shifts. We find that the inclusion of these additional effects allows a
good qualitative description of both.Comment: 10 pages, LaTeX, 4 figures in PostScript after text, LA-UR-91-215
Quantum key distribution with "dual detectors"
To improve the performance of a quantum key distribution (QKD) system, high
speed, low dark count single photon detectors (or low noise homodyne detectors)
are required. However, in practice, a fast detector is usually noisy. Here, we
propose a "dual detectors" method to improve the performance of a practical QKD
system with realistic detectors: the legitimate receiver randomly uses either a
fast (but noisy) detector or a quiet (but slow) detector to measure the
incoming quantum signals. The measurement results from the quiet detector can
be used to bound eavesdropper's information, while the measurement results from
the fast detector are used to generate secure key. We apply this idea to
various QKD protocols. Simulation results demonstrate significant improvements
in both BB84 protocol with ideal single photon source and Gaussian-modulated
coherent states (GMCS) protocol; while for decoy-state BB84 protocol with weak
coherent source, the improvement is moderate. We also discuss various practical
issues in implementing the "dual detectors" scheme.Comment: 22 pages, 9 figure
Recommended from our members
Feasibility study of electrocardiographic and respiratory gated, gadolinium enhanced magnetic resonance angiography of pulmonary veins and the impact of heart rate and rhythm on study quality
Background: We aimed to assess the feasibility of 3 dimensional (3D) respiratory and ECG gated, gadolinium enhanced magnetic resonance angiography (MRA) on a 3 Tesla (3 T) scanner for imaging pulmonary veins (PV) and left atrium (LA). The impact of heart rate (HR) and rhythm irregularity associated with atrial fibrillation (AF) on image and segmentation qualities were also assessed. Methods: 101 consecutive patients underwent respiratory and ECG gated (ventricular end systolic window) MRA for pre AF ablation imaging. Image quality (assessed by PV delineation) was scored as 1 = not visualized, 2 = poor, 3 = good and 4 = excellent. Segmentation quality was scored on a similar 4 point scale. Signal to noise ratios (SNRs) were calculated for the LA, LA appendage (LAA), and PV. Contrast to noise ratios (CNRs) were calculated between myocardium and LA, LAA and PV, respectively. Associations between HR/rhythm and quality metrics were assessed. Results: 35 of 101 (34.7%) patients were in AF at time of MRA. 100 (99%) patients had diagnostic studies, and 91 (90.1%) were of good or excellent quality. Overall, mean ± standard deviation (SD) image quality score was 3.40 ± 0.69. Inter observer agreement for image quality scores was substantial, (kappa = 0.68; 95% confidence interval (CI): 0.46, 0.90). Neither HR adjusting for rhythm [odds ratio (OR) = 1.03, 95% CI = 0.98,1.09; p = 0.22] nor rhythm adjusting for HR [OR = 1.25, 95% CI = 0.20, 7.69; p = 0.81] demonstrated association with image quality. Similarly, SNRs and CNRs were largely independent of HR after adjusting for rhythm. Segmentation quality scores were good or excellent for 77.3% of patients: mean ± SD score = 2.91 ± 0.63, and scores did not significantly differ by baseline rhythm (p = 0.78). Conclusions: 3D respiratory and ECG gated, gadolinium enhanced MRA of the PVs and LA on a 3 T system is feasible during ventricular end systole, achieving high image quality and high quality image segmentation when imported into electroanatomic mapping systems. Quality is independent of HR and heart rhythm for this free breathing, radiation free, alternative strategy to current MRA or CT based approaches, for pre AF ablation imaging of PVs and LA
- …