1,218 research outputs found
Propellant tank pressurization system Patent
Method and apparatus for pressurizing propellant tanks used in propulsion motor feed syste
Hydrogen slush density reference system
A hydrogen slush density reference system was designed for calibration of field-type instruments and/or transfer standards. The device is based on the buoyancy principle of Archimedes. The solids are weighed in a low-mass container so arranged that solids and container are buoyed by triple-point liquid hydrogen during the weighing process. Several types of hydrogen slush density transducers were developed and tested for possible use as transfer standards. The most successful transducers found were those which depend on change in dielectric constant, after which the Clausius-Mossotti function is used to relate dielectric constant and density
Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields
Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D+ and Cl+ fragments were recorded via velocity-map imaging. A waveformdependent anti-correlated directional emission of D+ and Cl+ fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl+ and in turn the directional emission of charged fragments upon the breakup of the molecular ion
Novel Nonreciprocal Acoustic Effects in Antiferromagnets
The possible occurrence of nonreciprocal acoustic effects in antiferromagnets
in the absence of an external magnetic field is investigated using both (i) a
microscopic formulation of the magnetoelastic interaction between spins and
phonons and (ii) symmetry arguments. We predict for certain antiferromagnets
the existence of two new nonreciprocal (non-time invariant) effects:
A boundary-condition induced nonreciprocal effect and the occurrence of
transversal phonon modes propagating in opposite directions having different
velocities. Estimates are given and possible materials for these effects to be
observed are suggested.Comment: Euro. Phys. Lett. (in press
Analyzing Transatlantic Network Traffic over Scientific Data Caches
Large scientific collaborations often share huge volumes of data around the
world. Consequently a significant amount of network bandwidth is needed for
data replication and data access. Users in the same region may possibly share
resources as well as data, especially when they are working on related topics
with similar datasets. In this work, we study the network traffic patterns and
resource utilization for scientific data caches connecting European networks to
the US. We explore the efficiency of resource utilization, especially for
network traffic which consists mostly of transatlantic data transfers, and the
potential for having more caching node deployments. Our study shows that these
data caches reduced network traffic volume by 97% during the study period. This
demonstrates that such caching nodes are effective in reducing wide-area
network traffic
Recommended from our members
Quantifying lung ultrasound comets with a convolutional neural network: Initial clinical results
Lung ultrasound comets are "comet-tail" artifacts appearing in lung ultrasound images. They are particularly useful in detecting several lung pathologies and may indicate the amount of extravascular lung water. However, the comets are not always well defined and large variations in the counting results exist between observers. This study uses a convolutional neural network to quantify these lung ultrasound comets on a 4864-image clinical lung ultrasound dataset labeled by the authors. The neural network counted the number of comets correctly on 43.4% of the images and has an intraclass correlation (ICC) of 0.791 with respect to human counting on the test set. The ICC level indicates a higher correlation level than previously reported ICC between human observers. The neural network was then deployed and applied to a clinical 6272-image dataset. The correlation between the automated comet counts and the clinical parameters was examined. The comet counts correlate positively with the diastolic blood pressure (p = 0.047, r = 0.448), negatively with ejection fraction (p = 0.061, r = -0.513), and negatively with BMI (p = 0.009, r = -0.566). The neural network can be alternatively formulated as a diagnostic test for comet-positive images with 80.8% accuracy. The results could potentially be improved with a larger dataset and a refined approach to the neural networks used
Hemodialysis Graft with Blind Loop Inflow Segment Treated with Stent Placement
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74924/1/j.1525-139X.2008.00460.x.pd
FACT - Threshold prediction for higher duty cycle and improved scheduling
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). The use of Silicon devices promise
a higher photon detection efficiency, more robustness and higher precision than
photo-multiplier tubes. Being operated during different light-conditions, the
threshold settings of a Cherenkov telescope have to be adapted to feature the
lowest possible threshold but also an efficient suppression of triggers from
night-sky background photons. Usually this threshold is set either by
experience or a mini-ratescan. Since the measured current through the sensors
is directly correlated with the noise level, the current can be used to set the
best threshold at any time. Due to the correlation between the physical
threshold and the final energy threshold, the current can also be used as a
measure for the energy threshold of any observation. This presentation
introduces a method which uses the properties of the moon and the source
position to predict the currents and the corresponding energy threshold for
every upcoming observation allowing to adapt the observation schedule
accordingly
FACT - Long-term Monitoring of Bright TeV-Blazars
Since October 2011, the First G-APD Cherenkov Telescope (FACT) is operated
successfully on the Canary Island of La Palma. Apart from the proof of
principle for the use of G-APDs in Cherenkov telescopes, the major goal of the
project is the dedicated long-term monitoring of a small sample of bright TeV
blazars. The unique properties of G-APDs permit stable observations also during
strong moon light. Thus a superior sampling density is provided on time scales
at which the blazar variability amplitudes are expected to be largest, as
exemplified by the spectacular variations of Mrk 501 observed in June 2012.
While still in commissioning, FACT monitored bright blazars like Mrk 421 and
Mrk 501 during the past 1.5 years so far. Preliminary results including the Mrk
501 flare from June 2012 will be presented.Comment: 4 pages, 4 figures, presented at the 33rd ICRC (2013
- …