2,863 research outputs found

    Neutron star properties in the Thomas-Fermi model

    Get PDF
    The modern nucleon-nucleon interaction of Myers and Swiatecki, adjusted to the properties of finite nuclei, the parameters of the mass formula, and the behavior of the optical potential is used to calculate the properties of β\beta--equilibrated neutron star matter, and to study the impact of this equation of state on the properties of (rapidly rotating) neutron stars and their cooling behavior. The results are in excellent agreement with the outcome of calculations performed for a broad collection of sophisticated nonrelativistic as well as relativistic models for the equation of state.Comment: 23 pages, LaTeX, 15 ps-figure

    Compatibility of neutron star masses and hyperon coupling constants

    Full text link
    It is shown that the modern equations of state for neutron star matter based on microscopic calculations of symmetric and asymmetric nuclear matter are compatible with the lower bound on the maximum neutron-star mass for a certain range of hyperon coupling constants, which are constrained by the binding energies of hyperons in symmetric nuclear matter. The hyperons are included by means of the relativistic Hartree-- or Hartree--Fock approximation. The obtained couplings are also in satisfactory agreement with hypernuclei data in the relativistic Hartree scheme. Within the relativistic Hartree--Fock approximation hypernuclei have not been investigated so far.Comment: 12 pages, 3 figures. Dedicated to Prof. Georg Suessmann on the occasion of his 70th birthday. To be published in Zeitschrift fuer Naturforschung

    Symmetric and asymmetric nuclear matter in the relativistic approach at finite temperatures

    Get PDF
    The properties of hot matter are studied in the frame of the relativistic Brueckner-Hartree-Fock theory. The equations are solved self-consistently in the full Dirac space. For the interaction we used the potentials given by Brockmann and Machleidt. The obtained critical temperatures are smaller than in most of the nonrelativistic investigations. We also calculated the thermodynamic properties of hot matter in the relativistic Hartree--Fock approximation, where the force parameters were adjusted to the outcome of the relativistic Brueckner--Hartree--Fock calculations at zero temperature. Here, one obtains higher critical temperatures, which are comparable with other relativistic calculations in the Hartree scheme.Comment: 8 pages, 9 figures, submitted in a shorter version to Phys. Rev.

    Scaling Behavior in Soliton Models

    Get PDF
    In the framework of chiral soliton models we study the behavior of static nucleon properties under rescaling of the parameters describing the effective meson theory. In particular we investigate the question of whether the Brown--Rho scaling laws are general features of such models. When going beyond the simple Skyrme model we find that restrictive constraints need to be imposed on the mesonic parameters in order to maintain these scaling laws. Furthermore, in the case when vector mesons are included in the model it turns out that the isoscalar form factor no longer scales according to these laws. Finally we note that, in addition to the exact scaling laws of the model, one may construct approximate {\it local scaling laws}, which depend of the particular choice of Lagrangian parameters.Comment: 10 pages Latex, figures added using epsfi

    Tax Sales of Real Estate--Inadequate Consideration No Longer Grounds for Invalidation

    Get PDF

    The reliability of simple progressive dies

    Get PDF
    The stamping process, of which the punching process is a major division, is one of the most important metal parts production methods in industry. Punching dies are the heart of the punching process. Die performance, as measured by the number of strokes between sharpenings and/or repairs, determines the important per part costs of die depletion and maintenance. Existing quantitative studies are principally on tool wear and punchability

    Soliton Models for the Nucleon and Predictions for the Nucleon Spin Structure

    Get PDF
    In these lectures the three flavor soliton approach for baryons is reviewed. Effects of flavor symmetry breaking in the baryon wave--functions on axial current matrix elements are discussed. A bosonized chiral quark model is considered to outline the computation of spin dependent nucleon structure functions in the soliton picture.Comment: 12 pages, Lectures presented at the Advanced Study Institute Symmetry and Spin, Prague, 2001, to appear in the proceedings. References correcte

    Phase Field Crystal model for particles with n-fold rotational symmetry in two dimensions

    Full text link
    We introduce a Phase Field Crystal (PFC) model for particles with n-fold rotational symmetry in two dimensions. Our approach is based on a free energy functional that depends on the reduced one-particle density, the strength of the orientation, and the direction of the orientation, where all these order parameters depend on the position. The functional is constructed such that for particles with axial symmetry (i. e. n = 2) the PFC model for liquid crystals as introduced by H. L\"owen [J. Phys.: Condens. Matter 22, 364105 (2010)] is recovered. We discuss the stability of the functional and explore phases that occur for 1≤n≤61 \leq n \leq 6. In addition to isotropic, nematic, stripe, and triangular order, we also observe cluster crystals with square, rhombic, honeycomb, and even quasicrystalline symmetry. The n-fold symmetry of the particles corresponds to the one that can be realized for colloids with symmetrically arranged patches. We explain how both, repulsive as well as attractive patches, are described in our model.Comment: 20 pages, 12 figure

    Chiral Quark Model

    Get PDF
    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe--Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two--fold Pauli--Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.Comment: Talk presented at the workshop QCD 2002, IIT Kanpur, Nov. 2002, 10 pages, proceedings style files include
    • …
    corecore