13,695 research outputs found
Simulation of Transport and Gain in Quantum Cascade Lasers
Quantum cascade lasers can be modeled within a hierarchy of different
approaches: Standard rate equations for the electron densities in the levels,
semiclassical Boltzmann equation for the microscopic distribution functions,
and quantum kinetics including the coherent evolution between the states. Here
we present a quantum transport approach based on nonequilibrium Green
functions. This allows for quantitative simulations of the transport and
optical gain of the device. The division of the current density in two terms
shows that semiclassical transitions are likely to dominate the transport for
the prototype device of Sirtori et al. but not for a recent THz-laser with only
a few layers per period. The many particle effects are extremely dependent on
the design of the heterostructure, and for the case considered here, inclusion
of electron-electron interaction at the Hartree Fock level, provides a sizable
change in absorption but imparts only a minor shift of the gain peak.Comment: 12 pages, 5 figures included, to appear in in "Advances in Solid
State Physics", ed. by B. Kramer (Springer 2003
The Emergence and Significance of the Palaestra Type in Greek Architecture
Seit ihrem Aufkommen im 4. Jh. v. Chr. bildeten Palästren die typische Bauform griechischer Gymnasien. Der Beitrag diskutiert Funktion und Bedeutung dieser Architekturform aus zwei Perspektiven. Einerseits wird die Identifikation mehrerer Bauten kritisch hinterfragt (Argos, Epidauros, Milet, Paestum, Sikyon). Davon ausgehend wird die Kombination von Peristylhof, Exedra und Waschraum (Lutron) als ein Kriterienkatalog definiert, mit dessen Hilfe sich in aller Regel die typologische Deutung eines Baus als Palästra begründen lässt. Andererseits wird die Bedeutung des Peristylmotivs vor dem weiteren Hintergrund des zeitgenössischen Städtebaus erörtert. Dabei wird deutlich, dass das Peristyl auch im Fall der Gymnasia zur Schaffung funktional sowie sozial exklusiver Räume genutzt wurde
Gain in quantum cascade lasers and superlattices: A quantum transport theory
Gain in current-driven semiconductor heterostructure devices is calculated
within the theory of nonequilibrium Green functions. In order to treat the
nonequilibrium distribution self-consistently the full two-time structure of
the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The
results are independent of the choice of the electromagnetic field if the
variation of the self-energy is taken into account. Excellent quantitative
agreement is obtained with the experimental gain spectrum of a quantum cascade
laser. Calculations for semiconductor superlattices show that the simple 2-time
miniband transport model gives reliable results for large miniband widths at
room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review
Gain and Loss in Quantum Cascade Lasers
We report gain calculations for a quantum cascade laser using a fully
self-consistent quantum mechanical approach based on the theory of
nonequilibrium Green functions. Both the absolute value of the gain as well as
the spectral position at threshold are in excellent agreement with experimental
findings for T=77 K. The gain strongly decreases with temperature.Comment: 7 pages, 3 figures directly include
Self-Consistent Theory of the Gain Linewidth for Quantum Cascade Lasers
The linewidth in intersubband transitions can be significantly reduced below
the sum of the lifetime broadening for the involved states, if the scattering
environment is similar for both states. This is studied within a nonequilibrium
Green function approach here. We find that the effect is of particular
relevance for a recent, relatively low doped, THz quantum cascade laser.Comment: 3 pages, figures include
A hybrid model for chaotic front dynamics: From semiconductors to water tanks
We present a general method for studying front propagation in nonlinear
systems with a global constraint in the language of hybrid tank models. The
method is illustrated in the case of semiconductor superlattices, where the
dynamics of the electron accumulation and depletion fronts shows complex
spatio-temporal patterns, including chaos. We show that this behavior may be
elegantly explained by a tank model, for which analytical results on the
emergence of chaos are available. In particular, for the case of three tanks
the bifurcation scenario is characterized by a modified version of the
one-dimensional iterated tent-map.Comment: 4 pages, 4 figure
Density-matrix theory of the optical dynamics and transport in quantum cascade structures: The role of coherence
The impact of coherence on the nonlinear optical response and stationary
transport is studied in quantum cascade laser structures. Nonequilibrium
effects such as pump-probe signals, the spatio-temporally resolved electron
density evolution, and the subband population dynamics (Rabi flopping) as well
as the stationary current characteristics are investigated within a microscopic
density-matrix approach. Focusing on the stationary current and the recently
observed gain oscillations, it is found that the inclusion of coherence leads
to observable coherent effects in opposite parameter regimes regarding the
relation between the level broadening and the tunnel coupling across the main
injection barrier. This shows that coherence plays a complementary role in
stationary transport and nonlinear optical dynamics in the sense that it leads
to measurable effects in opposite regimes. For this reason, a fully coherent
consideration of such nonequilibrium structures is necessary to describe the
combined optical and transport propertiesComment: 14 pages, 11 figures; final versio
- …