1,987 research outputs found
Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers
The influence of magnetic anisotropy on nanosecond magnetization reversal in
coupled FeNi/Cu/Co trilayers was studied using a photoelectron emission
microscope combined with x-ray magnetic circular dicroism. In quasi-isotropic
samples the reversal of the soft FeNi layer is determined by domain wall
pinning that leads to the formation of small and irregular domains. In samples
with uniaxial magnetic anisotropy, the domains are larger and the influence of
local interlayer coupling dominates the domain structure and the reversal of
the FeNi layer
Ground states of 2d +-J Ising spin glasses via stationary Fokker-Planck sampling
We investigate the performance of the recently proposed stationary
Fokker-Planck sampling method considering a combinatorial optimization problem
from statistical physics. The algorithmic procedure relies upon the numerical
solution of a linear second order differential equation that depends on a
diffusion-like parameter D. We apply it to the problem of finding ground states
of 2d Ising spin glasses for the +-J-Model. We consider square lattices with
side length up to L=24 with two different types of boundary conditions and
compare the results to those obtained by exact methods.
A particular value of D is found that yields an optimal performance of the
algorithm. We compare this optimal value of D to a percolation transition,
which occurs when studying the connected clusters of spins flipped by the
algorithm. Nevertheless, even for moderate lattice sizes, the algorithm has
more and more problems to find the exact ground states. This means that the
approach, at least in its standard form, seems to be inferior to other
approaches like parallel tempering.Comment: v1: 13 pages, 7 figures; v2: extended tex
Decoherence in nonclassical motional states of a trapped ion
Published versio
Integrated cross-domain object storage in working memory: Evidence from a verbal-spatial memory task
Working-memory theories often include domain-specific verbal and visual stores (e.g., the phonological and visuospatial buffers of Baddeley, 1986), and some also posit more general stores thought to be capable of holding verbal or visuospatial materials (Baddeley, 2000; Cowan, 2005). However, it is currently unclear which type of store is primarily responsible for maintaining objects that include components from multiple domains. In these studies, a spatial array of letters was followed by a single probe identical to an item in the array or differing systematically in spatial location, letter identity, or their combination. Concurrent verbal rehearsal suppression impaired memory in each of these trial types in a task that required participants to remember verbal-spatial binding, but did not impair memory for spatial locations if the task did not require verbal-spatial binding for a correct response. Thus, spatial information might be stored differently when it must be bound to verbal information. This suggests that a cross-domain store such as the episodic buffer of Baddeley (2000) or the focus of attention of Cowan (2001) might be used for integrated object storage, rather than the maintenance of associations between features stored in separate domain-specific buffers
Stochastic Phase Space Localization for a Single Particle
We propose a feedback scheme to control the vibrational motion of a single
trapped particle based on indirect measurements of its position. It results the
possibility of a motional phase space uncertainty contraction, correponding to
cool the particle close to the motional ground state.Comment: 9 pages, 1 figure. Concluding section and figure revised. In press on
Phys. rev.
Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments
Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7â9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed
Broadband Dielectric Spectroscopy on Glass-Forming Propylene Carbonate
Dielectric spectroscopy covering more than 18 decades of frequency has been
performed on propylene carbonate in its liquid and supercooled-liquid state.
Using quasi-optic submillimeter and far-infrared spectroscopy the dielectric
response was investigated up to frequencies well into the microscopic regime.
We discuss the alpha-process whose characteristic timescale is observed over 14
decades of frequency and the excess wing showing up at frequencies some three
decades above the peak frequency. Special attention is given to the
high-frequency response of the dielectric loss in the crossover regime between
alpha-peak and boson-peak. Similar to our previous results in other glass
forming materials we find evidence for additional processes in the crossover
regime. However, significant differences concerning the spectral form at high
frequencies are found. We compare our results to the susceptibilities obtained
from light scattering and to the predictions of various models of the glass
transition.Comment: 13 pages, 9 figures, submitted to Phys. Rev.
Engineering arbitrary motional ionic state through realistic intensity-fluctuating laser pulses
We present a reliable scheme for engineering arbitrary motional ionic states
through an adaptation of the projection synthesis technique for trapped-ion
phenomena. Starting from a prepared coherent motional state, the Wigner
function of the desired state is thus sculpted from a Gaussian distribution.
The engineering process has also been developed to take into account the errors
arising from intensity fluctuations in the exciting-laser pulses required for
manipulating the electronic and vibrational states of the trapped ion. To this
end, a recently developed phenomenological-operator approach that allows for
the influence of noise will be applied. This approach furnishes a
straightforward technique to estimate the fidelity of the prepared state in the
presence of errors, precluding the usual extensive ab initio calculations. The
results obtained here by the phenomenological approach, to account for the
effects of noise in our engineering scheme, can be directly applied to any
other process involving trapped-ion phenomena.Comment: more information at http://www.df.ufscar.br/~quantum
Fast quantum gates for cold trapped ions
Published versio
Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double beta decay
The next-generation Enriched Xenon Observatory (nEXO) is a proposed
experiment to search for neutrinoless double beta () decay in
Xe with a target half-life sensitivity of approximately years
using kg of isotopically enriched liquid-xenon in a time
projection chamber. This improvement of two orders of magnitude in sensitivity
over current limits is obtained by a significant increase of the Xe
mass, the monolithic and homogeneous configuration of the active medium, and
the multi-parameter measurements of the interactions enabled by the time
projection chamber. The detector concept and anticipated performance are
presented based upon demonstrated realizable background rates.Comment: v2 as publishe
- âŠ