127 research outputs found

    Altered miR-193a-5p expression in children with cow's milk allergy

    Get PDF
    Cow's milk allergy (CMA) is one of the most common food allergies in children. Epigenetic mechanisms have been suggested to play a role in CMA pathogenesis. We shown that DNA methylation of Th1/Th2 cytokine genes and FoxP3 affects CMA disease course. Preliminary evidence suggest that also the miRNome could be implicated in the pathogenesis of allergy. Main study outcome was to comparatively evaluate miRNome in children with CMA and in healthy controls

    Design of experimental design as a tool for the processing and characterization of HDPE composites with sponge-gourds (Luffa-Cylindrica) agrofiber residue.

    Get PDF
    Sponge-gourd (Luffa-Cylindrica) agrofiber residue (LC)-HDPE composites were manufactured by extrusion and injection moulding. The effects of fiber content, fiber size, screw speed and barrel zones temperatures on tensile strength at yield (TS) point, modulus of elasticity (MOE), flexure stress (FS) and Izod pendulum impact resistance were evaluated by using a design of experiments (DOE)-24 Factorial with centerpoint. Furthermore, a model was also determined for each response variable as well as to generate foreknowledge for additional combinations of the experimental factors. The design analysis showed that the LC-fiber content is the most important experimental factor, since it significantly affected three out of the four mechanical properties studied, specifically MOE, FS and Izod Impact resistance. The second most important parameter is the LC-fiber size. Additionally, the design analysis showed that screw speed and temperature of barrel zones did not present any influence on the properties investigated. Finally, the models were validated by comparing the results from additional experimental runs with the predicted values obtained from the respective model

    Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While lenalidomide (LEN) shows high efficacy in myelodysplastic syndromes (MDS) with del[5q], responses can be also seen in patients presenting without del[5q]. We hypothesized that improved detection of chromosomal abnormalities with new karyotyping tools may better predict response to LEN.</p> <p>Design and methods</p> <p>We have studied clinical, molecular and cytogenetic features of 42 patients with MDS, myeloproliferative neoplasms (MPN), MDS/MPN overlap syndromes and secondary acute myeloid leukemia (sAML) without del[5q] by metaphase cytogenetics (MC) who underwent therapy with LEN.</p> <p>Results</p> <p>Fluorescence in situ hybridization (FISH) or single nucleotide polymorphism array (SNP-A)-based karyotyping marginally increased the diagnostic yield over MC, detecting 2/42 (4.8%) additional cases with del[5q], one of whom were responded to LEN. Responses were more often observed in patients with a normal karyotype by MC (60% vs abnormal MC; 17%, <it>p </it>= .08) and those with gain of chromosome 8 material by either of all 3 karyotyping methods (83% vs all other chromosomal abnormalities; 44% <it>p </it>= .11). However, 5 out of those 6 patients received combined LEN/AZA therapy and it may also suggest those with gain of chromosome 8 material respond well to AZA. The addition of FISH or SNP-A did not improve the predictive value of normal cytogenetics by MC. Mutational analysis of <it>TET2, UTX, CBL, EZH2, ASXL1, TP53, RAS, IDH1/2</it>, and <it>DNMT-3A </it>was performed on 21 of 41 patients, and revealed 13 mutations in 11 patients, but did not show any molecular markers of responsiveness to LEN.</p> <p>Conclusions</p> <p>Normal karyotype and gain of chromosome 8 material was predictive of response to LEN in non-del[5q] patients with myeloid malignancies.</p

    Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes.

    Get PDF
    The splicing factor SF3B1 is the most frequently mutated gene in myelodysplastic syndromes (MDS), and is strongly associated with the presence of ring sideroblasts (RS). We have performed a systematic analysis of cryptic splicing abnormalities from RNA sequencing data on hematopoietic stem cells (HSCs) of SF3B1-mutant MDS cases with RS. Aberrant splicing events in many downstream target genes were identified and cryptic 3' splice site usage was a frequent event in SF3B1-mutant MDS. The iron transporter ABCB7 is a well-recognized candidate gene showing marked downregulation in MDS with RS. Our analysis unveiled aberrant ABCB7 splicing, due to usage of an alternative 3' splice site in MDS patient samples, giving rise to a premature termination codon in the ABCB7 mRNA. Treatment of cultured SF3B1-mutant MDS erythroblasts and a CRISPR/Cas9-generated SF3B1-mutant cell line with the nonsense-mediated decay (NMD) inhibitor cycloheximide showed that the aberrantly spliced ABCB7 transcript is targeted by NMD. We describe cryptic splicing events in the HSCs of SF3B1-mutant MDS, and our data support a model in which NMD-induced downregulation of the iron exporter ABCB7 mRNA transcript resulting from aberrant splicing caused by mutant SF3B1 underlies the increased mitochondrial iron accumulation found in MDS patients with RS

    TET2 mutations as a part of DNA dioxygenase deficiency in myelodysplastic syndromes

    Get PDF
    Decrease in DNA dioxygenase activity generated by TET2 gene family is crucial in myelodysplastic syndromes (MDS). The general downregulation of 5-hydroxymethylcytosine (5-hmC) argues for a role of DNA demethylation in MDS beyond TET2 mutations, which albeit frequent, do not convey any prognostic significance. We investigated TETs expression to identify factors which can modulate the impact of mutations and thus 5-hmC levels on clinical phenotypes and prognosis of MDS patients. DNA/RNA-sequencing and 5-hmC data were collected from 1665 patients with MDS and 91 controls. Irrespective of mutations, a significant fraction of MDS patients exhibited lower TET2 expression, whereas 5-hmC levels were not uniformly decreased. In searching for factors explaining compensatory mechanisms, we discovered that TET3 was upregulated in MDS and inversely correlated with TET2 expression in wild type cases. Although TET2 was reduced across all age groups, TET3 levels were increased in a likely feedback mechanism induced by TET2 dysfunction. This inverse relationship of TET2 and TET3 expression also corresponded to the expression of L-2-hydroxyglutarate dehydrogenase, involved in agonist/antagonist substrate metabolism. Importantly, elevated TET3 levels influ-enced the clinical phenotype of TET2 deficiency whereby the lack of compensation by TET3 (low TET3 expression) was associated with poor outcomes of TET2 mutant carriers
    • …
    corecore