277 research outputs found

    On Hubbard-Stratonovich Transformations over Hyperbolic Domains

    Full text link
    We discuss and prove validity of the Hubbard-Stratonovich (HS) identities over hyperbolic domains which are used frequently in the studies on disordered systems and random matrices. We also introduce a counterpart of the HS identity arising in disordered systems with "chiral" symmetry. Apart from this we outline a way of deriving the nonlinear σ\sigma-model from the gauge-invariant Wegner k−k-orbital model avoiding the use of the HS transformations.Comment: More accurate proofs are given; a few misprints are corrected; a misleading reference and a footnote in the end of section 2.2 are remove

    Level curvature distribution in a model of two uncoupled chaotic subsystems

    Get PDF
    We study distributions of eigenvalue curvatures for a block diagonal random matrix perturbed by a full random matrix. The most natural physical realization of this model is a quantum chaotic system with some inherent symmetry, such that its energy levels form two independent subsequences, subject to a generic perturbation which does not respect the symmetry. We describe analytically a crossover in the form of a curvature distribution with a tunable parameter namely the ratio of inter/intra subsystem coupling strengths. We find that the peak value of the curvature distribution is much more sensitive to the changes in this parameter than the power law tail behaviour. This observation may help to clarify some qualitative features of the curvature distributions observed experimentally in acoustic resonances of quartz blocks

    A conjecture on Hubbard-Stratonovich transformations for the Pruisken-Sch\"afer parameterisations of real hyperbolic domains

    Full text link
    Rigorous justification of the Hubbard-Stratonovich transformation for the Pruisken-Sch\"afer type of parameterisations of real hyperbolic O(m,n)-invariant domains remains a challenging problem. We show that a naive choice of the volume element invalidates the transformation, and put forward a conjecture about the correct form which ensures the desired structure. The conjecture is supported by complete analytic solution of the problem for groups O(1,1) and O(2,1), and by a method combining analytical calculations with a simple numerical evaluation of a two-dimensional integral in the case of the group O(2,2).Comment: Published versio

    On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values

    Full text link
    Given any fixed N×NN \times N positive semi-definite diagonal matrix G≥0G\ge 0 we derive the explicit formula for the density of complex eigenvalues for random matrices AA of the form A=UGA=U\sqrt{G}} where the random unitary matrices UU are distributed on the group U(N)\mathrm{U(N)} according to the Haar measure.Comment: 10 pages, 1 figur

    Inhomogeneous losses and complexness of wave functions in chaotic cavities

    Get PDF
    In a two-dimensional microwave chaotic cavity Ohmic losses located at the contour of the cavity result in different broadenings of different modes. We provide an analytic description and establish the link between such an inhomogeneous damping and the complex (non-real) character of biorthogonal wave functions. This substantiates the corresponding recent experimental findings of Barthélemy et al. (Europhys. Lett., 70 (2005) 162)

    Scaling and the center of band anomaly in a one-dimensional Anderson model with diagonal disorder

    Full text link
    We resolve the problem of the violation of single parameter scaling at the zero energy of the Anderson tight-binding model with diagonal disorder. It follows from the symmetry properties of the tight-binding Hamiltonian that this spectral point is in fact a boundary between two adjacent bands. The states in the vicinity of this energy behave similarly to states at other band boundaries, which are known to violate single parameter scaling.Comment: revised version, 4 pages, 2 figures, revte

    Wigner Random Banded Matrices with Sparse Structure: Local Spectral Density of States

    Full text link
    Random banded matrices with linearly increasing diagonal elements are recently considered as an attractive model for complex nuclei and atoms. Apart from early papers by Wigner \cite{Wig} there were no analytical studies on the subject. In this letter we present analytical and numerical results for local spectral density of states (LDOS) for more general case of matrices with a sparsity inside the band. The crossover from the semicircle form of LDOS to that given by the Breit-Wigner formula is studied in detail.Comment: Misprints are corrected and stylistic changes are made. To be published in PR

    Distribution of "level velocities" in quasi 1D disordered or chaotic systems with localization

    Full text link
    The explicit analytical expression for the distribution function of parametric derivatives of energy levels ("level velocities") with respect to a random change of scattering potential is derived for the chaotic quantum systems belonging to the quasi 1D universality class (quantum kicked rotator, "domino" billiard, disordered wire, etc.).Comment: 11 pages, REVTEX 3.

    The decay of photoexcited quantum systems: a description within the statistical scattering model

    Full text link
    The decay of photoexcited quantum systems (examples are photodissociation of molecules and autoionization of atoms) can be viewed as a half-collision process (an incoming photon excites the system which subsequently decays by dissociation or autoionization). For this reason, the standard statistical approach to quantum scattering, originally developed to describe nuclear compound reactions, is not directly applicable. Using an alternative approach, correlations and fluctuations of observables characterizing this process were first derived in [Fyodorov YV and Alhassid Y 1998 Phys. Rev. A 58, R3375]. Here we show how the results cited above, and more recent results incorporating direct decay processes, can be obtained from the standard statistical scattering approach by introducing one additional channel.Comment: 7 pages, 2 figure

    Fluctuations in random RL−CRL-C networks: non-linear σ−\sigma- model description

    Full text link
    Disordered RL−CRL-C networks are known to be an adequate model for describing fluctuations of electric fields in a random metal-dielectric composite. We show that under appropriate conditions the statistical properties of such a system can be studied in the framework of the Efetov's non-linear σ−\sigma- model. This fact provides a direct link to the theory of Anderson localization.Comment: 4 pages, latex, no figure
    • …
    corecore