1,035 research outputs found

    Superconductivity in S-substituted FeTe

    Full text link
    We have successfully synthesized a new superconducting phase of FeTe1-xSx with a PbO-type structure. It has the simplest crystal structure in iron-based superconductors. Superconducting transition temperature is about 10 K at x = 0.2. The upper critical field Hc2 was estimated to be ~70 T. The coherent length was calculated to be ~2.2 nm. Because FeTe1-xSx is composed of nontoxic elements, this material is a candidate for applications and will activate more and more research on iron-based superconductor.Comment: 13 pages, 10 figure

    Tunneling magnetoresistance in (La,Pr,Ca)MnO3 nanobridges

    Full text link
    The manganite (La,Pr,Ca)MnO3 is well known for its micrometer scale phase separation into coexisting ferromagnetic metallic and antiferromagnetic insulating (AFI) regions. Fabricating bridges with widths smaller than the phase separation length scale has allowed us to probe the magnetic properties of individual phase separated regions. We observe tunneling magnetoresistance across naturally occurring AFI tunnel barriers separating adjacent ferromagnetic regions spanning the width of the bridges. Further, near the Curie temperature, a magnetic field induced metal-to-insulator transition among a discrete number of regions within the narrow bridges gives rise to abrupt and colossal low-field magnetoresistance steps at well defined switching fields.Comment: 13 pages, 3 figures, submitted to Applied Physics Letter

    Influence of Nd on the magnetic properties of Nd1-xCaxMnO3

    Full text link
    The role played by the Nd ions in the magnetic properties of Nd0.5Ca0.5MnO3 and Nd0.7Ca0.3MnO3 is studied using static magnetization, neutron diffraction and high frequency (9.4-475GHz) Electron Spin Resonance. We show that the Nd ions are weakly coupled to the Mn ions via ferromagnetic exchange and are responsible for the peculiar ferromagnetic resonance observed in the FM phase of both compounds (ground state below 120K for x=0.3, high field state for x=0.5). We then use ESR to look for magnetic phase separation in the low field, CO phase of Nd0.5Ca0.5MnO3. We show that there is no trace of the FM phase imbedded in the CO phase, contrary to what is observed in La0.5Ca0.5MnO3 or Pr0.5Sr0.5MnO3.Comment: to be published in phys.Rev.B as a Rapid Com

    Evolution of spin-wave excitations in ferromagnetic metallic manganites

    Full text link
    Neutron scattering results are presented for spin-wave excitations of three ferromagnetic metallic A1xAxA_{1-x}A^{\prime}_{x}MnO3_3 manganites (where AA and AA^\prime are rare- and alkaline-earth ions), which when combined with previous work elucidate systematics of the interactions as a function of carrier concentration xx, on-site disorder, and strength of the lattice distortion. The long wavelength spin dynamics show only a very weak dependence across the series. The ratio of fourth to first neighbor exchange (J4/J1J_4/J_1) that controls the zone boundary magnon softening changes systematically with xx, but does not depend on the other parameters. None of the prevailing models can account for these behaviors.Comment: Submitted to Phys. Rev. Let

    Soft spin waves in the low temperature thermodynamics of Pr_{0.7}Ca_{0.3}MnO_{3}

    Full text link
    We present a detailed magnetothermal study of Pr(0.7)Ca(0.3)MnO(3), a perovskite manganite in which an insulator-metal transition can be driven by magnetic field, but also by pressure, visible light, x-rays, or high currents. We find that the field-induced transition is associated with an enormous release of energy which accounts for its strong irreversibility. In the ferromagnetic metallic state, specific heat and magnetization measurements indicate a much smaller spin wave stiffness than that seen in any other manganite, which we attribute to spin waves among the ferromagnetically ordered Pr moments. The coupling between the Pr and Mn spins may also provide a basis for understanding the low temperature phase diagram of this most unusual manganite.Comment: 10 pages, LATEX, 5 PDF figures, corrected typo

    Signature of Magnetic Phase Separation in the Ground State of Pr1-xCaxMnO3

    Full text link
    Neutron scattering has been used to investigate the evolution of the long- and short-range charge-ordered (CO), ferromagnetic (FM), and antiferromagnetic (AF) correlations in single crystals of Pr1-xCaxMnO3. The existence and population of spin clusters as refected by short-range correlations are found to drastically depend on the doping (x) and temperature (T). Concentrated spin clusters coexist with long-range canted AF order in a wide temperature range in x = 0.3 while clusters do not appear in x = 0.4 crystal. In contrast, both CO and AF order parameters in the x = 0.35 crystal show a precipitous decrease below ~ 35 K where spin clusters form. These results provide direct evidence of magnetic phase separation and indicate that there is a critical doping x_c (close to x = 0.35) that divides the phase-separated site-centered from the homogeneous bond-centered or charge-disproportionated CO ground state.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter

    Glutamatergic input from specific sources influences the nucleus accumbens-ventral pallidum information flow

    Get PDF
    The nucleus accumbens (NAc) is positioned to integrate signals originating from limbic and cortical areas and to modulate reward-related motor output of various goal-directed behaviours. The major target of the NAc GABAergic output neurons is the ventral pallidum (VP). VP is part of the reward circuit and controls the ascending mesolimbic dopamine system, as well as the motor output structures and the brainstem. The excitatory inputs governing this system converge in the NAc from the prefrontal cortex (PFC), ventral hippocampus (vHC), midline and intralaminar thalamus (TH) and basolateral nucleus of the amygdala (BLA). It is unclear which if any of these afferents innervate the medium spiny neurons of the NAc, that project to the VP. To identify the source of glutamatergic afferents that innervate neurons projecting to the VP, a dual-labelling method was used: Phaseolus vulgaris leucoagglutinin for anterograde and EGFP-encoded adenovirus for retrograde tract-tracing. Within the NAc, anterogradely labelled BLA terminals formed asymmetric synapses on dendritic spines that belonged to medium spiny neurons retrogradely labelled from the VP. TH terminals also formed synapses on dendritic spines of NAc neurons projecting to the VP. However, dendrites and dendritic spines retrogradely labelled from VP received no direct synaptic contacts from afferents originating from mPFC and vHC in the present material, despite the large number of fibres labelled by the anterograde tracer injections. These findings represent the first experimental evidence for a selective glutamatergic innervation of NAc neurons projecting to the VP. The glutamatergic inputs of different origin (i.e. mPFC, vHC, BLA, TH) to the NAc might thus convey different types of reward-related information during goal-directed behaviour, and thereby contribute to the complex regulation of nucleus accumbens functions.National Institutes of Health (U.S.) (Grants NS030549 and DA09158)GENADDICT Integrated Project (Grant LSHM-CT-2004-005166)National Office for Research and Technology (Hungary) (Grant CNK77793)Howard Hughes Medical Institute (Grant 55005608

    An Origin of CMR: Competing Phases and Disorder-Induced Insulator-to-Metal Transition in Manganites

    Full text link
    We theoretically explore the mechanism of the colossal magnetoresistance in manganese oxides by explicitly taking into account the phase competition between the double-exchange ferromagnetism and the charge-ordered insulator. We find that quenched disorder causes a drastic change of the multicritical phase diagram by destroying the charge-ordered state selectively. As a result, there appears a nontrivial phenomenon of the disorder-induced insulator-to-metal transition in the multicritical regime. On the contrary, the disorder induces a highly-insulating state above the transition temperature where charge-ordering fluctuations are much enhanced. The contrasting effects provide an understanding of the mechanism of the colossal magnetoresistance. The obtained scenario is discussed in comparison with other theoretical proposals such as the polaron theory, the Anderson localization, the multicritical-fluctuation scenario, and the percolation scenario.Comment: 16 pages, 7 figures, submitted to Wandlitz Days on Magnetism: Local-Moment Ferromagnets: Unique Properties for Modern Application
    corecore