23,990 research outputs found

    Decay Phase Cooling and Inferred Heating of M- and X-class Solar Flares

    Full text link
    In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared to the predictions of an analytical 0-D hydrodynamic model. It is found that the model does not fit the observations well, but does provide a well defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy as calculated with GOES. This decay phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay phase heating in small flares. However, in the most energetic flares the decay phase heating inferred from the model can be several times greater than the peak thermal energy.Comment: Published in the Astrophysical Journal, 201

    Radiation-reaction-induced evolution of circular orbits of particles around Kerr Black Holes

    Get PDF
    It is demonstrated that, in the adiabatic approximation, non-Equatorial circular orbits of particles in the Kerr metric (i.e. orbits of constant Boyer-Lindquist radius) remain circular under the influence of gravitational radiation reaction. A brief discussion is given of conditions for breakdown of adiabaticity and of whether slightly non-circular orbits are stable against the growth of eccentricity.Comment: 23 pages. Revtex 3.0. Inquiries to [email protected]

    Pathways for Nutrient Loss to Water; Slurry and Fertilizer Spreading

    Get PDF
    End of project reportThere are almost 150,000 farms in Ireland and these contribute substantial quantities of N and P to inland and coastal waters. Some of these nutrients are carried from wet soils by overland flow and by leaching from dry soils. Farm practice can reduce the loss from farms by judicious management of nutrients. Improvements are required to diminish export of nutrients without impairing operations on the farm. Literature regarding nutrient loss from agriculture was reviewed in this project and maps were prepared to predict best slurry spreading times around Ireland. Two further maps were prepared to show slurry storage requirement on farms

    Non-Linear Effects in Non-Kerr spacetimes

    Full text link
    There is a chance that the spacetime around massive compact objects which are expected to be black holes is not described by the Kerr metric, but by a metric which can be considered as a perturbation of the Kerr metric. These non-Kerr spacetimes are also known as bumpy black hole spacetimes. We expect that, if some kind of a bumpy black hole exists, the spacetime around it should possess some features which will make the divergence from a Kerr spacetime detectable. One of the differences is that these non-Kerr spacetimes do not posses all the symmetries needed to make them integrable. We discuss how we can take advantage of this fact by examining EMRIs into the Manko-Novikov spacetime.Comment: 8 pages, 3 Figures; to appear in the proceedings of the conference "Relativity and Gravitation: 100 Years after Einstein in Prague" (2012

    Intrinsic and extrinsic geometries of a tidally deformed black hole

    Full text link
    A description of the event horizon of a perturbed Schwarzschild black hole is provided in terms of the intrinsic and extrinsic geometries of the null hypersurface. This description relies on a Gauss-Codazzi theory of null hypersurfaces embedded in spacetime, which extends the standard theory of spacelike and timelike hypersurfaces involving the first and second fundamental forms. We show that the intrinsic geometry of the event horizon is invariant under a reparameterization of the null generators, and that the extrinsic geometry depends on the parameterization. Stated differently, we show that while the extrinsic geometry depends on the choice of gauge, the intrinsic geometry is gauge invariant. We apply the formalism to solutions to the vacuum field equations that describe a tidally deformed black hole. In a first instance we consider a slowly-varying, quadrupolar tidal field imposed on the black hole, and in a second instance we examine the tide raised during a close parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure

    Templates for stellar mass black holes falling into supermassive black holes

    Get PDF
    The spin modulated gravitational wave signals, which we shall call smirches, emitted by stellar mass black holes tumbling and inspiralling into massive black holes have extremely complicated shapes. Tracking these signals with the aid of pattern matching techniques, such as Wiener filtering, is likely to be computationally an impossible exercise. In this article we propose using a mixture of optimal and non-optimal methods to create a search hierarchy to ease the computational burden. Furthermore, by employing the method of principal components (also known as singular value decomposition) we explicitly demonstrate that the effective dimensionality of the search parameter space of smirches is likely to be just three or four, much smaller than what has hitherto been thought to be about nine or ten. This result, based on a limited study of the parameter space, should be confirmed by a more exhaustive study over the parameter space as well as Monte-Carlo simulations to test the predictions made in this paper.Comment: 12 pages, 4 Tables, 4th LISA symposium, submitted to CQ

    Quasi-Periodic Pulsations during the Impulsive and Decay phases of an X-class Flare

    Full text link
    Quasi-periodic pulsations (QPP) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 28 October 2013. We focus on the character of the fine structure pulsations evident in the soft X-ray time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of ~20s is observed in all channels and a second timescale of ~55s is observed in the non-thermal emissions. Soft X-ray pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from ~40s up to ~70s. We interpret the bursty nature of the co-existing multi-wavelength QPP during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPP are most likely connected with compressive MHD processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.Comment: 7 pages, 4 figures, 1 tabl

    Prospects for GRB Polarimetry with GRAPE

    Get PDF
    This paper discusses the latest progress in the development of GRAPE (Gamma‐Ray Polarimeter Experiment), a hard X‐ray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard X‐rays in the 50–300 keV energy range. We are particularly interested in X‐rays that are emitted from solar flares and gamma‐ray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central high‐Z crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the high‐Z crystal or not. A Compton scattered photon that is immediately photo absorbed by the high‐Z crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flat‐panel multi‐anode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large field‐of‐view (\u3e π steradian), at the same time offering the ability to be close‐packed with multiple modules in order to reduce deadspace. We present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources along with a brief description of our future plans for the GRAPE design

    Extending Sibgatullin's ansatz for the Ernst potential to generate a richer family of axially symmetric solutions of Einstein's equations

    Full text link
    The scope of this talk is to present some preliminary results on an effort, currently in progress, to generate an exact solution of Einstein's equation, suitable for describing spacetime around a rotating compact object. Specifically, the form of the Ernst potential on the symmetry axis and its connection with the multipole moments is discussed thoroughly. The way to calculate the multipole moments of spacetime directly from the value of the Ernst potential on the symmetry axis is presented. Finally, a mixed ansatz is formed for the Ernst potential including parameters additional to the ones dictated by Sibgatullin. Thus, we believe that this talk can also serve as a comment on choosing the appropriate ansatz for the Ernst potential.Comment: Talk given in the 11th Conference on Recent Developments in Gravity, 2-5 June 2004, Lesbos, Greec
    • 

    corecore