23,990 research outputs found
Decay Phase Cooling and Inferred Heating of M- and X-class Solar Flares
In this paper, the cooling of 72 M- and X-class flares is examined using
GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the
observed total cooling times are compared to the predictions of an analytical
0-D hydrodynamic model. It is found that the model does not fit the
observations well, but does provide a well defined lower limit on a flare's
total cooling time. The discrepancy between observations and the model is then
assumed to be primarily due to heating during the decay phase. The decay phase
heating necessary to account for the discrepancy is quantified and found be
~50% of the total thermally radiated energy as calculated with GOES. This decay
phase heating is found to scale with the observed peak thermal energy. It is
predicted that approximating the total thermal energy from the peak is
minimally affected by the decay phase heating in small flares. However, in the
most energetic flares the decay phase heating inferred from the model can be
several times greater than the peak thermal energy.Comment: Published in the Astrophysical Journal, 201
Radiation-reaction-induced evolution of circular orbits of particles around Kerr Black Holes
It is demonstrated that, in the adiabatic approximation, non-Equatorial
circular orbits of particles in the Kerr metric (i.e. orbits of constant
Boyer-Lindquist radius) remain circular under the influence of gravitational
radiation reaction. A brief discussion is given of conditions for breakdown of
adiabaticity and of whether slightly non-circular orbits are stable against the
growth of eccentricity.Comment: 23 pages. Revtex 3.0. Inquiries to [email protected]
Pathways for Nutrient Loss to Water; Slurry and Fertilizer Spreading
End of project reportThere are almost 150,000 farms in Ireland and these contribute substantial quantities of N and P to inland and coastal waters. Some of these nutrients are carried from wet soils by overland flow and by leaching from dry soils. Farm practice can reduce the loss from farms by judicious management of nutrients. Improvements are required to diminish export of nutrients without impairing operations on the farm. Literature regarding nutrient loss from agriculture was reviewed in this project and maps were prepared to predict best slurry spreading times around Ireland. Two further maps were prepared to show slurry storage requirement on farms
Non-Linear Effects in Non-Kerr spacetimes
There is a chance that the spacetime around massive compact objects which are
expected to be black holes is not described by the Kerr metric, but by a metric
which can be considered as a perturbation of the Kerr metric. These non-Kerr
spacetimes are also known as bumpy black hole spacetimes. We expect that, if
some kind of a bumpy black hole exists, the spacetime around it should possess
some features which will make the divergence from a Kerr spacetime detectable.
One of the differences is that these non-Kerr spacetimes do not posses all the
symmetries needed to make them integrable. We discuss how we can take advantage
of this fact by examining EMRIs into the Manko-Novikov spacetime.Comment: 8 pages, 3 Figures; to appear in the proceedings of the conference
"Relativity and Gravitation: 100 Years after Einstein in Prague" (2012
Intrinsic and extrinsic geometries of a tidally deformed black hole
A description of the event horizon of a perturbed Schwarzschild black hole is
provided in terms of the intrinsic and extrinsic geometries of the null
hypersurface. This description relies on a Gauss-Codazzi theory of null
hypersurfaces embedded in spacetime, which extends the standard theory of
spacelike and timelike hypersurfaces involving the first and second fundamental
forms. We show that the intrinsic geometry of the event horizon is invariant
under a reparameterization of the null generators, and that the extrinsic
geometry depends on the parameterization. Stated differently, we show that
while the extrinsic geometry depends on the choice of gauge, the intrinsic
geometry is gauge invariant. We apply the formalism to solutions to the vacuum
field equations that describe a tidally deformed black hole. In a first
instance we consider a slowly-varying, quadrupolar tidal field imposed on the
black hole, and in a second instance we examine the tide raised during a close
parabolic encounter between the black hole and a small orbiting body.Comment: 27 pages, 4 figure
Templates for stellar mass black holes falling into supermassive black holes
The spin modulated gravitational wave signals, which we shall call smirches,
emitted by stellar mass black holes tumbling and inspiralling into massive
black holes have extremely complicated shapes. Tracking these signals with the
aid of pattern matching techniques, such as Wiener filtering, is likely to be
computationally an impossible exercise. In this article we propose using a
mixture of optimal and non-optimal methods to create a search hierarchy to ease
the computational burden. Furthermore, by employing the method of principal
components (also known as singular value decomposition) we explicitly
demonstrate that the effective dimensionality of the search parameter space of
smirches is likely to be just three or four, much smaller than what has
hitherto been thought to be about nine or ten. This result, based on a limited
study of the parameter space, should be confirmed by a more exhaustive study
over the parameter space as well as Monte-Carlo simulations to test the
predictions made in this paper.Comment: 12 pages, 4 Tables, 4th LISA symposium, submitted to CQ
Quasi-Periodic Pulsations during the Impulsive and Decay phases of an X-class Flare
Quasi-periodic pulsations (QPP) are often observed in X-ray emission from
solar flares. To date, it is unclear what their physical origins are. Here, we
present a multi-instrument investigation of the nature of QPP during the
impulsive and decay phases of the X1.0 flare of 28 October 2013. We focus on
the character of the fine structure pulsations evident in the soft X-ray time
derivatives and compare this variability with structure across multiple
wavelengths including hard X-ray and microwave emission. We find that during
the impulsive phase of the flare, high correlations between pulsations in the
thermal and non-thermal emissions are seen. A characteristic timescale of ~20s
is observed in all channels and a second timescale of ~55s is observed in the
non-thermal emissions. Soft X-ray pulsations are seen to persist into the decay
phase of this flare, up to 20 minutes after the non-thermal emission has
ceased. We find that these decay phase thermal pulsations have very small
amplitude and show an increase in characteristic timescale from ~40s up to
~70s. We interpret the bursty nature of the co-existing multi-wavelength QPP
during the impulsive phase in terms of episodic particle acceleration and
plasma heating. The persistent thermal decay phase QPP are most likely
connected with compressive MHD processes in the post-flare loops such as the
fast sausage mode or the vertical kink mode.Comment: 7 pages, 4 figures, 1 tabl
Prospects for GRB Polarimetry with GRAPE
This paper discusses the latest progress in the development of GRAPE (GammaâRay Polarimeter Experiment), a hard Xâray Compton Polarimeter. The purpose of GRAPE is to measure the polarization of hard Xârays in the 50â300 keV energy range. We are particularly interested in Xârays that are emitted from solar flares and gammaâray bursts (GRBs). Accurately measuring the polarization of the emitted radiation from these sources will lead to a better understating of both the emission mechanisms and source geometries. The GRAPE design consists of an array of plastic scintillators surrounding a central highâZ crystal scintillator. We can monitor individual Compton scatters that occur in the plastics and determine whether the photon is photo absorbed by the highâZ crystal or not. A Compton scattered photon that is immediately photo absorbed by the highâZ crystal constitutes a valid event. These valid events provide us with the interaction locations of each incident photon and ultimately produces a modulation pattern for the Compton scattering of the polarized radiation. Comparing with Monte Carlo simulations of a 100% polarized beam, the level of polarization of the measured beam can then be determined. The complete array is mounted on a flatâpanel multiâanode photomultiplier tube (MAPMT) that can measure the deposited energies resulting from the photon interactions. The design of the detector allows for a large fieldâofâview (\u3e Ï steradian), at the same time offering the ability to be closeâpacked with multiple modules in order to reduce deadspace. We present in this paper the latest laboratory results obtained from GRAPE using partially polarized radiation sources along with a brief description of our future plans for the GRAPE design
Extending Sibgatullin's ansatz for the Ernst potential to generate a richer family of axially symmetric solutions of Einstein's equations
The scope of this talk is to present some preliminary results on an effort,
currently in progress, to generate an exact solution of Einstein's equation,
suitable for describing spacetime around a rotating compact object.
Specifically, the form of the Ernst potential on the symmetry axis and its
connection with the multipole moments is discussed thoroughly. The way to
calculate the multipole moments of spacetime directly from the value of the
Ernst potential on the symmetry axis is presented. Finally, a mixed ansatz is
formed for the Ernst potential including parameters additional to the ones
dictated by Sibgatullin. Thus, we believe that this talk can also serve as a
comment on choosing the appropriate ansatz for the Ernst potential.Comment: Talk given in the 11th Conference on Recent Developments in Gravity,
2-5 June 2004, Lesbos, Greec
- âŠ