34,085 research outputs found
Spin conductivity in almost integrable spin chains
The spin conductivity in the integrable spin-1/2 XXZ-chain is known to be
infinite at finite temperatures T for anisotropies -1 < Delta < 1.
Perturbations which break integrability, e.g. a next-nearest neighbor coupling
J', render the conductivity finite. We construct numerically a non-local
conserved operator J_parallel which is responsible for the finite spin Drude
weight of the integrable model and calculate its decay rate for small J'. This
allows us to obtain a lower bound for the spin conductivity sigma_s >= c(T) /
J'^2, where c(T) is finite for J' to 0. We discuss the implication of our
result for the general question how non-local conservation laws affect
transport properties.Comment: 6 pages, 5 figure
TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
Transverse-momentum-dependent distributions (TMDs) are central in high-energy
physics from both theoretical and phenomenological points of view. In this
manual we introduce the library, TMDlib, of fits and parameterisations for
transverse-momentum-dependent parton distribution functions (TMD PDFs) and
fragmentation functions (TMD FFs) together with an online plotting tool,
TMDplotter. We provide a description of the program components and of the
different physical frameworks the user can access via the available
parameterisations.Comment: version 2, referring to TMDlib 1.0.2 - comments and references adde
Optical-NIR spectroscopy of the puzzling gamma-ray source 3FGL 1603.9-4903/PMN J1603-4904 with X-shooter
The Fermi/LAT instrument has detected about two thousands Extragalactic High
Energy (E > 100 MeV) gamma-ray sources. One of the brightest is 3FGL
1603.9-4903, associated to the radio source PMN J1603-4904. Its nature is not
yet clear, it could be either a very peculiar BL Lac or a CSO (Compact
Symmetric Object) radio source, considered as the early stage of a radio
galaxy. The latter, if confirmed, would be the first detection in gamma-rays
for this class of objects. Recently a redshift z=0.18 +/- 0.01 has been claimed
on the basis of the detection of a single X-ray line at 5.44 +/- 0.05 keV
interpreted as a 6.4 keV (rest frame) fluorescent line. We aim to investigate
the nature of 3FGL 1603.9-4903/PMN J1603-4904 using optical to NIR
spectroscopy. We observed PMN J1603-4904 with the UV-NIR VLT/X-shooter
spectrograph for two hours. We extracted spectra in the VIS and NIR range that
we calibrated in flux and corrected for telluric absorption and we
systematically searched for absorption and emission features. The source was
detected starting from ~6300 Ang down to 24000 Ang with an intensity comparable
to the one of its 2MASS counterpart and a mostly featureless spectrum. The
continuum lacks absorption features and thus is non-stellar in origin and
likely non-thermal. On top of this spectrum we detected three emission lines
that we interpret as the Halpha-[NII] complex, the [SII] 6716,6731 doublet and
the [SIII] 9530 line, obtaining a redshift estimate of z= 0.2321 +/- 0.0004.
The equivalent width of the Halpha-[NII] complex implies that PMN J1603-4904
does not follow the observational definition of BL Lac, the line ratios suggest
that a LINER/Seyfert nucleus is powering the emission. This new redshift
measurement implies that the X-ray line previously detected should be
interpreted as a 6.7 keV line which is very peculiar.Comment: Published in Astronomy and Astrophysic
Lamination And Microstructuring Technology for a Bio-Cell Multiwell array
Microtechnology becomes a versatile tool for biological and biomedical
applications. Microwells have been established long but remained
non-intelligent up to now. Merging new fabrication techniques and handling
concepts with microelectronics enables to realize intelligent microwells
suitable for future improved cancer treatment. The described technology depicts
the basis for the fabrication of a elecronically enhanced microwell. Thin
aluminium sheets are structured by laser micro machining and laminated
successively to obtain registration tolerances of the respective layers of
5..10\^Am. The microwells lasermachined into the laminate are with
50..80\^Am diameter, allowing to hold individual cells within the well.
The individual process steps are described and results on the microstructuring
are given.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/EDA-Publishing
Escape from a metastable well under a time-ramped force
Thermally activated escape of an over-damped particle from a metastable well
under the action of a time-ramped force is studied. We express the mean first
passage time (MFPT) as the solution to a partial differential equation, which
we solve numerically for a model case. We discuss two approximations of the
MFPT, one of which works remarkably well over a wide range of loading rates,
while the second is easy to calculate and can provide a valuable first
estimate.Comment: 9 pages, including 2 figure
Depinning of kinks in a Josephson-junction ratchet array
We have measured the depinning of trapped kinks in a ratchet potential using
a fabricated circular array of Josephson junctions. Our ratchet system consists
of a parallel array of junctions with alternating cell inductances and
junctions areas. We have compared this ratchet array with other circular
arrays. We find experimentally and numerically that the depinning current
depends on the direction of the applied current in our ratchet ring. We also
find other properties of the depinning current versus applied field, such as a
long period and a lack of reflection symmetry, which we can explain
analytically.Comment: to be published in PR
Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan
Multi-step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3-hours warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context makes the development of real-time rainfall-runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3-hours. In this paper we develop a novel semi-distributed, data-driven, rainfall-runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network-based Fuzzy Inference System solutions is created using various combinations of auto-regressive, spatially-lumped radar and point-based rain gauge predictors. Different levels of spatially-aggregated radar-derived rainfall data are used to generate 4, 8 and 12 sub-catchment input drivers. In general, the semi-distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead-times greater than 3-hours. Performance is found to be optimal when spatial aggregation is restricted to 4 sub-catchments, with up to 30% improvements in the performance over lumped and point-based models being evident at 5-hour lead times. The potential benefits of applying semi-distributed, data-driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, is thus demonstrated
Comparison of crystal structures and effects of Co substitution in a new member of Fe-1111 superconductor family AeFeAsF(Ae = Ca and Sr): a possible candidate for higher Tc superconductor
We refined crystal structures of newly found members of the Fe-1111
superconductor family, CaFe\_{1-x}Co\_{x}AsF and SrFe\_{1-x}Co\_{x}AsF (x = 0,
0.06, 0.12) by powder synchrotron X-ray diffraction analysis. The tetragonal to
orthorhombic phase transitions were observed at ~120 K for unsubstituted
CaFeAsF and at ~180 K for unsubstituted SrFeAsF, the transition temperatures
agreeing with kinks observed in temperature-dependent resistivity curves.
Although the transition temperature decreases, the structural phase transitions
were observed below 100 K in both samples of x = 0.06, and finally they were
suppressed in the doping level of x = 0.12. The refined structures reveal that
distortions of the FeAs4 tetrahedron from the regular tetrahedron likely
originate from mismatches in atomic radii among the constituent elements. In
this system, the enlarged FeAs4 tetrahedron resulting from larger radius of Sr
than that of Ca is flattened along a-b plane, whereas the smaller radius of Ca
makes the tetrahedron closer to regular one, and their characteristic shapes
are further enhanced by Co substitution. These results suggest that the CaFeAsF
compound is a promising candidate for higher-Tc superconductor.Comment: 17 pages, 8 figures, 2 tables, Supplementary information is included
at the end of the documen
High-Velocity Estimates and Inverse Scattering for Quantum N-Body Systems with Stark Effect
In an N-body quantum system with a constant electric field, by inverse
scattering, we uniquely reconstruct pair potentials, belonging to the optimal
class of short-range potentials and long-range potentials, from the
high-velocity limit of the Dollard scattering operator. We give a
reconstruction formula with an error term.Comment: In this published version we have added remarks and we have edited
the pape
- …