323 research outputs found
Metal-Insulator transitions in the periodic Anderson model
We solve the Periodic Anderson model in the Mott-Hubbard regime, using
Dynamical Mean Field Theory. Upon electron doping of the Mott insulator, a
metal-insulator transition occurs which is qualitatively similar to that of the
single band Hubbard model, namely with a divergent effective mass and a first
order character at finite temperatures. Surprisingly, upon hole doping, the
metal-insulator transition is not first order and does not show a divergent
mass. Thus, the transition scenario of the single band Hubbard model is not
generic for the Periodic Anderson model, even in the Mott-Hubbard regime.Comment: 5 pages, 4 figure
Asymmetry between the electron- and hole-doped Mott transition in the periodic Anderson model
We study the doping driven Mott metal-insulator transition (MIT) in the
periodic Anderson model set in the Mott-Hubbard regime. A striking asymmetry
for electron or hole driven transitions is found. The electron doped MIT at
larger U is similar to the one found in the single band Hubbard model, with a
first order character due to coexistence of solutions. The hole doped MIT, in
contrast, is second order and can be described as the delocalization of
Zhang-Rice singlets.Comment: 18 pages, 19 figure
Mott physics and first-order transition between two metals in the normal state phase diagram of the two-dimensional Hubbard model
For doped two-dimensional Mott insulators in their normal state, the
challenge is to understand the evolution from a conventional metal at high
doping to a strongly correlated metal near the Mott insulator at zero doping.
To this end, we solve the cellular dynamical mean-field equations for the
two-dimensional Hubbard model using a plaquette as the reference quantum
impurity model and continuous-time quantum Monte Carlo method as impurity
solver. The normal-state phase diagram as a function of interaction strength
, temperature , and filling shows that, upon increasing towards
the Mott insulator, there is a surface of first-order transition between two
metals at nonzero doping. That surface ends at a finite temperature critical
line originating at the half-filled Mott critical point. Associated with this
transition, there is a maximum in scattering rate as well as thermodynamic
signatures. These findings suggest a new scenario for the normal-state phase
diagram of the high temperature superconductors. The criticality surmised in
these systems can originate not from a T=0 quantum critical point, nor from the
proximity of a long-range ordered phase, but from a low temperature transition
between two types of metals at finite doping. The influence of Mott physics
therefore extends well beyond half-filling.Comment: 27 pages, 16 figures, LaTeX, published versio
Stimulation of Ca2+-ATPase Transport Activity by a Small-Molecule Drug
The sarco(endo)plasmic reticulum Ca(2+)−ATPase (SERCA) hydrolyzes ATP to transport Ca(2+) from the cytoplasm to the sarcoplasmic reticulum (SR) lumen, thereby inducing muscle relaxation. Dysfunctional SERCA has been related to various diseases. The identification of small‐molecule drugs that can activate SERCA may offer a therapeutic approach to treat pathologies connected with SERCA malfunction. Herein, we propose a method to study the mechanism of interaction between SERCA and novel SERCA activators, i. e. CDN1163, using a solid supported membrane (SSM) biosensing approach. Native SR vesicles or reconstituted proteoliposomes containing SERCA were adsorbed on the SSM and activated by ATP concentration jumps. We observed that CDN1163 reversibly interacts with SERCA and enhances ATP‐dependent Ca(2+) translocation. The concentration dependence of the CDN1163 effect provided an EC(50)=6.0±0.3 μM. CDN1163 was shown to act directly on SERCA and to exert its stimulatory effect under physiological Ca(2+) concentrations. These results suggest that CDN1163 interaction with SERCA can promote a protein conformational state that favors Ca(2+) release into the SR lumen
Oncoplastic conservative surgery for breast cancer: long-term outcomes of our first ten years experience
The main goal of oncoplastic breast surgery (OBS) is to optimize cosmetic outcomes and reduce patient morbidity, while still providing an oncologically-safe surgical outcome and extending the target population of conservative surgery. Although the growing number of reported experiences with oncoplastic surgery, few studies account for the long-term outcomes
The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans
Living as a commensal, Candida albicans must adapt and respond to environmental cues generated by the mammalian host and by microbes comprising the natural flora. These signals have opposing effects on C. albicans, with host cues promoting the yeast-to-hyphal transition and bacteria-derived quorum-sensing molecules inhibiting hyphal development. Hyphal development is regulated through modulation of the cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and it has been postulated that quorum-sensing molecules can affect filamentation by inhibiting the cAMP pathway. Here, we show that both farnesol and 3-oxo-C12-homoserine lactone, a quorum-sensing molecule secreted by Pseudomonas aeruginosa, block hyphal development by affecting cAMP signaling; they both directly inhibited the activity of the Candida adenylyl cyclase, Cyr1p. In contrast, the 12-carbon alcohol dodecanol appeared to modulate hyphal development and the cAMP signaling pathway without directly affecting the activity of Cyr1p. Instead, we show that dodecanol exerted its effects through a mechanism involving the C. albicans hyphal repressor, Sfl1p. Deletion of SFL1 did not affect the response to farnesol but did interfere with the response to dodecanol. Therefore, quorum sensing in C. albicans is mediated via multiple mechanisms of action. Interestingly, our experiments raise the possibility that the Burkholderia cenocepacia diffusible signal factor, BDSF, also mediates its effects via Sfl1p, suggesting that dodecanol's mode of action, but not farnesol or 3-oxo-C12-homoserine lactone, may be used by other quorum-sensing molecules
Inhibition of I kappa B Kinase Attenuates the Organ Injury and Dysfunction Associated with Hemorrhagic Shock
R Sordi is supported by the program Science without Borders, CAPES Foundation,
Ministry of Education of Brazil, Brasilia/DF, Brazil; NSA Patel is, in part, supported by the Bart’s and The LondonCharity (753/1722). The research leading
to these results has received funding from the People Programme (Marie
Curie Actions) of the European Union′s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement n° 608765, from the William Harvey
Research Foundation and University of Turin (Ricerca Locale ex-60%). This
work contributes to the Organ Protection
research theme of the Barts Centre
for Trauma Sciences, supported by the
Barts and The London Charity (Award
753/1722) and forms part of the research
themes contributing to the translational
research portfolio of Barts and the London
Cardiovascular Biomedical Research
Unit, which is supported and funded by
the National Institute of Health Researc
Oncological safety of stromal vascular fraction enriched fat grafting in two-stage breast reconstruction after nipple sparing mastectomy: long-term results of a prospective study
OBJECTIVE: Autologous fat transfer (AFT) is commonly used to treat implant palpability and prevent fibrosis and thinning in mastectomy skin flaps. A major limit to this procedure is volume retention over time, leading to the introduction of fat enrichment with stromal vascular fraction (SVF+AFT). Oncological concerns have been raised over the injection of an increased concentration of progenitors cells (ASCs) in the SVF. The aim of the study is to evaluate the long-term cancer recurrence risk of SVF+AFT cases compared to AFT, in patients undergoing Nipple Sparing Mastectomy (NSM). PATIENTS AND METHODS: A prospective study was designed to compare three groups of patients undergoing NSM followed by SVF+AFT, AFT or none (control group), after a two-stage breast reconstruction. Patients were strictly followed-up for at least 5-years from the second stage reconstructive procedure. Loco-regional and systemic recurrence rate were evaluated over time as the primary outcome. Logistic regression was used to investigate which factors were associated with recurrence events and independent variables of interest were: surgical technique, age above 50 years old, lympho-vascular invasion, oncological stage, adjuvant or neoadjuvant chemotherapy, adjuvant radiotherapy and adjuvant hormone therapy. RESULTS: 41 women were included in G1 (SVF+AFT), 64 in G2 (AFT), and 64 in G3 (control group). Loco-regional recurrence rate was 2.4% for G1, 4.7% for G2, and 1.6% for G3. Systemic recurrence was 7.3%, 3.1%, and 3.1%, respectively. Among the variables included, there were no significant risk factors influencing a recurrence event, either loco-regional or systemic. In particular, SVF+AFT (G1) did not increase the oncological recurrence. CONCLUSIONS: Our data suggest that both centrifuged and SVF-enhanced fat transfer have a similar safety level in comparison to patients who did not undergo fat grafting in breast reconstruction after NSM
- …