28,061 research outputs found

    Laser-induced spin protection and switching in a specially designed magnetic dot: A theoretical investigation

    Full text link
    Most laser-induced femtosecond magnetism investigations are done in magnetic thin films. Nanostructured magnetic dots, with their reduced dimensionality, present new opportunities for spin manipulation. Here we predict that if a magnetic dot has a dipole-forbidden transition between the lowest occupied molecular orbital (LUMO) and the highest unoccupied molecular orbital (HOMO), but a dipole-allowed transition between LUMO+1 and HOMO, electromagnetically inducedtransparency can be used to prevent ultrafast laser-induced spin momentum reduction, or spin protection. This is realized through a strong dump pulse to funnel the population into LUMO+1. If the time delay between the pump and dump pulses is longer than 60 fs, a population inversion starts and spin switching is achieved. Thesepredictions are detectable experimentally.Comment: 6 pages, three figur

    On the afterglow from the receding jet of gamma-ray burst

    Full text link
    According to popular progenitor models of gamma-ray bursts, twin jets should be launched by the central engine, with a forward jet moving toward the observer and a receding jet (or the counter jet) moving backwardly. However, in calculating the afterglows, usually only the emission from the forward jet is considered. Here we present a detailed numerical study on the afterglow from the receding jet. Our calculation is based on a generic dynamical description, and includes some delicate ingredients such as the effect of the equal arrival time surface. It is found that the emission from the receding jet is generally rather weak. In radio bands, it usually peaks at a time of t1000t \geq 1000 d, with the peak flux nearly 4 orders of magnitude lower than the peak flux of the forward jet. Also, it usually manifests as a short plateau in the total afterglow light curve, but not as an obvious rebrightening as once expected. In optical bands, the contribution from the receding jet is even weaker, with the peak flux being 8\sim 8 orders of magnitude lower than the peak flux of the forward jet. We thus argue that the emission from the receding jet is very difficult to detect. However, in some special cases, i.e., when the circum-burst medium density is very high, or if the parameters of the receding jet is quite different from those of the forward jet, the emission from the receding jet can be significantly enhanced and may still emerge as a marked rebrightening. We suggest that the search for receding jet emission should mostly concentrate on nearby gamma-ray bursts, and the observation campaign should last for at least several hundred days for each event.Comment: A few citations added, together with a few minor revisions, main conclusions unchanged, accepted for publication in A&A, 7 figures, 10 Page

    Exact Moderate Deviation Asymptotics in Streaming Data Transmission

    Full text link
    In this paper, a streaming transmission setup is considered where an encoder observes a new message in the beginning of each block and a decoder sequentially decodes each message after a delay of TT blocks. In this streaming setup, the fundamental interplay between the coding rate, the error probability, and the blocklength in the moderate deviations regime is studied. For output symmetric channels, the moderate deviations constant is shown to improve over the block coding or non-streaming setup by exactly a factor of TT for a certain range of moderate deviations scalings. For the converse proof, a more powerful decoder to which some extra information is fedforward is assumed. The error probability is bounded first for an auxiliary channel and this result is translated back to the original channel by using a newly developed change-of-measure lemma, where the speed of decay of the remainder term in the exponent is carefully characterized. For the achievability proof, a known coding technique that involves a joint encoding and decoding of fresh and past messages is applied with some manipulations in the error analysis.Comment: 23 pages, 1 figure, 1 table, Submitted to IEEE Transactions on Information Theor

    Quantum Chemistry, Anomalous Dimensions, and the Breakdown of Fermi Liquid Theory in Strongly Correlated Systems

    Full text link
    We formulate a local picture of strongly correlated systems as a Feynman sum over atomic configurations. The hopping amplitudes between these atomic configurations are identified as the renormalization group charges, which describe the local physics at different energy scales. For a metallic system away from half-filling, the fixed point local Hamiltonian is a generalized Anderson impurity model in the mixed valence regime. There are three types of fixed points: a coherent Fermi liquid (FL) and two classes of self-similar (scale invariant) phases which we denote incoherent metallic states (IMS). When the transitions between the atomic configurations proceed coherently at low energies, the system is a Fermi liquid. Incoherent transitions between the low energy atomic configurations characterize the incoherent metallic states. The initial conditions for the renormalization group flow are determined by the physics at rather high energy scales. This is the domain of local quantum chemistry. We use simple quantum chemistry estimates to specify the basin of attraction of the IMS fixed points.Comment: 12 pages, REVTE

    Sum-of-squares of polynomials approach to nonlinear stability of fluid flows: an example of application

    Get PDF
    With the goal of providing the first example of application of a recently proposed method, thus demonstrating its ability to give results in principle, global stability of a version of the rotating Couette flow is examined. The flow depends on the Reynolds number and a parameter characterising the magnitude of the Coriolis force. By converting the original Navier-Stokes equations to a finite-dimensional uncertain dynamical system using a partial Galerkin expansion, high-degree polynomial Lyapunov functionals were found by sum-of-squares-of-polynomials optimization. It is demonstrated that the proposed method allows obtaining the exact global stability limit for this flow in a range of values of the parameter characterising the Coriolis force. Outside this range a lower bound for the global stability limit was obtained, which is still better than the energy stability limit. In the course of the study several results meaningful in the context of the method used were also obtained. Overall, the results obtained demonstrate the applicability of the recently proposed approach to global stability of the fluid flows. To the best of our knowledge, it is the first case in which global stability of a fluid flow has been proved by a generic method for the value of a Reynolds number greater than that which could be achieved with the energy stability approach

    Magnetic spin moment reduction in photoexcited ferromagnets through exchange interaction quenching: Beyond the rigid band approximation

    Full text link
    The exchange interaction among electrons is one of the most fundamental quantum mechanical interactions in nature and underlies any magnetic phenomena from ferromagnetic ordering to magnetic storage. The current technology is built upon a thermal or magnetic field, but a frontier is emerging to directly control magnetism using ultrashort laser pulses. However, little is known about the fate of the exchange interaction. Here we report unambiguously that photoexcitation is capable of quenching the exchange interaction in all three 3d3d ferromagnetic metals. The entire process starts with a small number of photoexcited electrons which build up a new and self-destructive potential that collapses the system into a new state with a reduced exchange splitting. The spin moment reduction follows a Bloch-like law as Mz(ΔE)=Mz(0)(1ΔE/ΔE0)1βM_z(\Delta E)=M_z(0)(1-{\Delta E}/{\Delta E_0})^{\frac{1}{\beta}}, where ΔE\Delta E is the absorbed photon energy and β\beta is a scaling exponent. A good agreement is found between the experimental and our theoretical results. Our findings may have a broader implication for dynamic electron correlation effects in laser-excited iron-based superconductors, iron borate, rare-earth orthoferrites, hematites and rare-earth transition metal alloys.Comment: 16 pages, 3 figures, one supplementary material fil
    corecore