28,202 research outputs found

    Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors

    Get PDF
    We report for the first time general geometrical expressions for the angular resolution of an arbitrary network of interferometric gravitational-wave (GW) detectors when the arrival-time of a GW is unknown. We show explicitly elements that decide the angular resolution of a GW detector network. In particular, we show the dependence of the angular resolution on areas formed by projections of pairs of detectors and how they are weighted by sensitivities of individual detectors. Numerical simulations are used to demonstrate the capabilities of the current GW detector network. We confirm that the angular resolution is poor along the plane formed by current LIGO-Virgo detectors. A factor of a few to more than ten fold improvement of the angular resolution can be achieved if the proposed new GW detectors LCGT or AIGO are added to the network. We also discuss the implications of our results for the design of a GW detector network, optimal localization methods for a given network, and electromagnetic follow-up observations.Comment: 13 pages, for Phys. Rev.

    Coupled-channel study of gamma p --> K+ Lambda

    Get PDF
    A coupled-channel (CC) approach has been developed to investigate kaon photoproduction on the nucleon. In addition to direct K+ Lambda production, our CC approach accounts for strangeness production including K+ Lambda final state interactions with both pi0 p and pi+ n intermediate states. Calculations for the gamma p --> K+ Lambda reaction have been performed, and compared with the recent data from SAPHIR, with emphasis on the CC effects. We show that the CC effects are significant at the level of inducing 20% changes on total cross sections; thereby, demonstrating the need to include pi N channels to correctly describe the gamma p --> K+ Lambda reaction.Comment: 12 pages, 6 eps figures, uses elsart.cls, submitted to Phys.Lett.B; v2: added paragraph in section

    Quasi-adiabatic Continuation of Quantum States: The Stability of Topological Ground State Degeneracy and Emergent Gauge Invariance

    Full text link
    We define for quantum many-body systems a quasi-adiabatic continuation of quantum states. The continuation is valid when the Hamiltonian has a gap, or else has a sufficiently small low-energy density of states, and thus is away from a quantum phase transition. This continuation takes local operators into local operators, while approximately preserving the ground state expectation values. We apply this continuation to the problem of gauge theories coupled to matter, and propose a new distinction, perimeter law versus "zero law" to identify confinement. We also apply the continuation to local bosonic models with emergent gauge theories. We show that local gauge invariance is topological and cannot be broken by any local perturbations in the bosonic models in either continuous or discrete gauge groups. We show that the ground state degeneracy in emergent discrete gauge theories is a robust property of the bosonic model, and we argue that the robustness of local gauge invariance in the continuous case protects the gapless gauge boson.Comment: 15 pages, 6 figure

    Time correlations in 1D quantum impurity problems

    Full text link
    We develop in this letter an analytical approach using form- factors to compute time dependent correlations in integrable quantum impurity problems. As an example, we obtain for the first time the frequency dependent conductivity G(ω)G(\omega) for the tunneling between the edges in the ν=1/3\nu=1/3 fractional quantum Hall effect, and the spectrum S(w)S(w) of the spin-spin correlation in the anisotropic Kondo model and equivalently in the double well system of dissipative quantum mechanics, both at vanishing temperature.Comment: 4 pages, Revtex and 2 figure

    QHE of Bilayer Systems in the Presence of Tunneling -- ν=1/q\nu=1/q case --

    Full text link
    Transport properties of bilayer quantum Hall systems at ν=1/q\nu=1/q, where qq is an odd integer, are investigated. The edge theory is used for the investigation, since tunneling between the two layers is assumed to occur on the edge of the sample because of the bulk incompressibility. It is shown that in the case of the independent Laughlin state tunneling is irrelevant when ν<1/2\nu<1/2 in the low temperature and long wave length limit. The temperature dependence of two-terminal conductance of the system in which only one of the two layers is contacted with electrode is discussed.Comment: 5 page

    Degeneracy of Multi-Component Quantum Hall States Satisfying Periodic Boundary Conditions

    Full text link
    In systems subject to periodic boundary conditions, Haldane has shown that states at arbitrary filling fraction possess a degeneracy with respect to center of mass translations. An analysis is carried out for multi-component electron systems and extra degeneracies are shown to exist. Their application to numerical studies is discussed.Comment: 16 pages, REVTEX v3.0, revised manuscrip

    Theory of pattern-formation of metallic microparticles in poorly conducting liquid

    Full text link
    We develop continuum theory of self-assembly and pattern formation in metallic microparticles immersed in a poorly conducting liquid in DC electric field. The theory is formulated in terms of two conservation laws for the densities of immobile particles (precipitate) and bouncing particles (gas) coupled to the Navier-Stokes equation for the liquid. This theory successfully reproduces correct topology of the phase diagram and primary patterns observed in the experiment [Sapozhnikov et al, Phys. Rev. Lett. v. 90, 114301 (2003)]: static crystals and honeycombs and dynamic pulsating rings and rotating multi-petal vortices.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Hall Drag in Correlated Double Layer Quantum Hall Systems

    Full text link
    We show that in the limit of zero temperature, double layer quantum Hall systems exhibit a novel phenomena called Hall drag, namely a current driven in one layer induces a voltage drop in the other layer, in the direction perpendicular to the driving current. The two-by-two Hall resistivity tensor is quantized and proportional to the K{\bf K} matrix that describes the topological order of the quantum Hall state, even when the K{\bf K} matrix contains a zero eigenvalue, in which case the Hall conductivity tensor does not exist. Relation between the present work and previous ones is also discussed.Comment: 4 pages, 1 eps figure. Accepted in PRB, R
    • …
    corecore