47 research outputs found
Primary stroke prevention worldwide : translating evidence into action
Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ?erimagi? (Poliklinika Glavi?, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo Ant?nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna Cz?onkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), Jo?o Sargento-Freitas (Centro Hospitalar e Universit?rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo Gon?alves (Hospital S?o Jos? do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps Jurj?ns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of Gda?sk, Gda?sk, Poland), Kursad Kutluk (Dokuz Eylul University, ?zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), Micha? Maluchnik (Ministry of Health, Warsaw, Poland), Evija Migl?ne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of Gda?sk, Gda?sk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: The stroke services survey reported in this publication was partly supported by World Stroke Organization and Auckland University of Technology. VLF was partly supported by the grants received from the Health Research Council of New Zealand. MOO was supported by the US National Institutes of Health (SIREN U54 HG007479) under the H3Africa initiative and SIBS Genomics (R01NS107900, R01NS107900-02S1, R01NS115944-01, 3U24HG009780-03S5, and 1R01NS114045-01), Sub-Saharan Africa Conference on Stroke Conference (1R13NS115395-01A1), and Training Africans to Lead and Execute Neurological Trials & Studies (D43TW012030). AGT was supported by the Australian National Health and Medical Research Council. SLG was supported by a National Heart Foundation of Australia Future Leader Fellowship and an Australian National Health and Medical Research Council synergy grant. We thank Anita Arsovska (University Clinic of Neurology, Skopje, North Macedonia), Manoj Bohara (HAMS Hospital, Kathmandu, Nepal), Denis ÄerimagiÄ (Poliklinika GlaviÄ, Dubrovnik, Croatia), Manuel Correia (Hospital de Santo AntĆ³nio, Porto, Portugal), Daissy Liliana Mora Cuervo (Hospital Moinhos de Vento, Porto Alegre, Brazil), Anna CzÅonkowska (Institute of Psychiatry and Neurology, Warsaw, Poland), Gloria Ekeng (Stroke Care International, Dartford, UK), JoĆ£o Sargento-Freitas (Centro Hospitalar e UniversitĆ”rio de Coimbra, Coimbra, Portugal), Yuriy Flomin (MC Universal Clinic Oberig, Kyiv, Ukraine), Mehari Gebreyohanns (UT Southwestern Medical Centre, Dallas, TX, USA), Ivete Pillo GonƧalves (Hospital SĆ£o JosĆ© do Avai, Itaperuna, Brazil), Claiborne Johnston (Dell Medical School, University of Texas, Austin, TX, USA), Kristaps JurjÄns (P Stradins Clinical University Hospital, Riga, Latvia), Rizwan Kalani (University of Washington, Seattle, WA, USA), Grzegorz Kozera (Medical University of GdaÅsk, GdaÅsk, Poland), Kursad Kutluk (Dokuz Eylul University, Ä°zmir, Turkey), Branko Malojcic (University Hospital Centre Zagreb, Zagreb, Croatia), MichaÅ Maluchnik (Ministry of Health, Warsaw, Poland), Evija MiglÄne (P Stradins Clinical University Hospital, Riga, Latvia), Cassandra Ocampo (University of Botswana, Princess Marina Hospital, Botswana), Louise Shaw (Royal United Hospitals Bath NHS Foundation Trust, Bath, UK), Lekhjung Thapa (Upendra Devkota Memorial-National Institute of Neurological and Allied Sciences, Kathmandu, Nepal), Bogdan Wojtyniak (National Institute of Public Health, Warsaw, Poland), Jie Yang (First Affiliated Hospital of Chengdu Medical College, Chengdu, China), and Tomasz Zdrojewski (Medical University of GdaÅsk, GdaÅsk, Poland) for their comments on early draft of the manuscript. The views expressed in this article are solely the responsibility of the authors and they do not necessarily reflect the views, decisions, or policies of the institution with which they are affiliated. We thank WSO for funding. The funder had no role in the design, data collection, analysis and interpretation of the study results, writing of the report, or the decision to submit the study results for publication. Funding Information: VLF declares that the PreventS web app and Stroke Riskometer app are owned and copyrighted by Auckland University of Technology; has received grants from the Brain Research New Zealand Centre of Research Excellence (16/STH/36), Australian National Health and Medical Research Council (NHMRC; APP1182071), and World Stroke Organization (WSO); is an executive committee member of WSO, honorary medical director of Stroke Central New Zealand, and CEO of New Zealand Stroke Education charitable Trust. AGT declares funding from NHMRC (GNT1042600, GNT1122455, GNT1171966, GNT1143155, and GNT1182017), Stroke Foundation Australia (SG1807), and Heart Foundation Australia (VG102282); and board membership of the Stroke Foundation (Australia). SLG is funded by the National Health Foundation of Australia (Future Leader Fellowship 102061) and NHMRC (GNT1182071, GNT1143155, and GNT1128373). RM is supported by the Implementation Research Network in Stroke Care Quality of the European Cooperation in Science and Technology (project CA18118) and by the IRIS-TEPUS project from the inter-excellence inter-cost programme of the Ministry of Education, Youth and Sports of the Czech Republic (project LTC20051). BN declares receiving fees for data management committee work for SOCRATES and THALES trials for AstraZeneca and fees for data management committee work for NAVIGATE-ESUS trial from Bayer. All other authors declare no competing interests. Publisher Copyright: Ā© 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseStroke is the second leading cause of death and the third leading cause of disability worldwide and its burden is increasing rapidly in low-income and middle-income countries, many of which are unable to face the challenges it imposes. In this Health Policy paper on primary stroke prevention, we provide an overview of the current situation regarding primary prevention services, estimate the cost of stroke and stroke prevention, and identify deficiencies in existing guidelines and gaps in primary prevention. We also offer a set of pragmatic solutions for implementation of primary stroke prevention, with an emphasis on the role of governments and population-wide strategies, including task-shifting and sharing and health system re-engineering. Implementation of primary stroke prevention involves patients, health professionals, funders, policy makers, implementation partners, and the entire population along the life course.publishersversionPeer reviewe
Environmental risk assessments for transgenic crops producing output trait enzymes
The environmental risks from cultivating crops producing output trait enzymes can be rigorously assessed by testing conservative risk hypotheses of no harm to endpoints such as the abundance of wildlife, crop yield and the rate of degradation of crop residues in soil. These hypotheses can be tested with data from many sources, including evaluations of the agronomic performance and nutritional quality of the crop made during product development, and information from the scientific literature on the mode-of-action, taxonomic distribution and environmental fate of the enzyme. Few, if any, specific ecotoxicology or environmental fate studies are needed. The effective use of existing data means that regulatory decision-making, to which an environmental risk assessment provides essential information, is not unnecessarily complicated by evaluation of large amounts of new data that provide negligible improvement in the characterization of risk, and that may delay environmental benefits offered by transgenic crops containing output trait enzymes
Hypoglycemic Effect of Selected Herbal Extracts on Streptozotocin Induced Diabetic Rats
Abstract: This study was carried out to investigate the most effective compounds extracted from approved selected antidiabetic plants on control blood glucose, serum insulin, lipid profile level and protective effect against oxidative stress in streptozotocin induced diabetic rats. Method: 70 albino rats were divided into 7 groups 10 rats each. Group Ā² normal control, group Ć diabetic control, group Ć received essential onion oil (100mg/kg b.w. orally), group Ā²V received alkaloids of lupin (100mg/kg b.w. orally), group V, group VĀ² received anthocyanins of cinnamon and mulberry respectively (16 mg/kg b.w. orally) and group VĆ received their combination together (58 mg/kg b.w. orally) for 21 days. At the end of experiment Blood glucose, insulin levels, triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol were estimated. Oxidative stress biomarkers represented in the amount of thiobarbituric acid reactive substances (TBARS) and nitric oxide were determined. Liver and kidney removed for histopathological examination. Results: All isolated compound improved diabetes status but the most potent antidiabetic effect was observed in combination of all compounds. W hile onion essential oil had both antioxdiabetic and antioxidant effect. Conculsion: These results suggest that administration of the combined drug and essential onion oil used as antidiabetic agent and improved diabetic status
Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials.
Distinct morphological MgO nanoparticles (MgONPs) were synthesized using biomasses of Saussurea costus roots. The biomass of two varieties of Saussurea costus (Qustal hindi and Qustal bahri) were used in the green synthesis of MgONPs. The physical and chemical features of nanoparticles were confirmed by spectroscopic and microscopic techniques. The surface morphology of the obtained nanoparticles was detected at different magnifications by SEM and TEM microscopy and the size of nanoparticles were found to be 30 and 34 nm for Qustal hindi and Qustal bahri, respectively. The antimicrobial activity of the prepared MgONPs was screened against six pathogenic strains. The synthesized nanoparticles by Qustal bahri biomass exerted significant inhibition zones 15, 16, 18, 17, 14, and 10 mm against E. coli, P. aeruginosa, C. tropicalis and C. glabrata, S. aureus and B. subtilis as compared to those from Qustal hindi 12, 8 and 17 mm against B. subtilis, E. coli and C. tropicalis, respectively. MgONPs showed a potential cytotoxicity effect against MCF-7 breast cancer cell lines. Cellular investigations of MgONPs revealed that the prepared nanoparticles by Qustal bahri exhibited high cytotoxicity against MCF-7 cancer cell lines. IC50 values in MCF-7 cells were found to be 67.3% and 52.1% for MgONPs of Saussurea costus biomasses, respectively. Also, the photocatalytic activity of MgONPs of each Saussurea costus variety was comparatively studied. They exhibited an enhanced photocatalytic degradation of methylene blue after UV irradiation for 1 h as 92% and 59% for those prepared by Qustal bahri and Qustal hindi, respectively. Outcome of results revealed that the biosynthesized MgONPs showed promising biomedical potentials
Exploring Natural Product Activity and Species Source Candidates for Hunting ABCB1 Transporter Inhibitors: An In Silico Drug Discovery Study
The P-glycoprotein (P-gp/ABCB1) is responsible for a xenobiotic efflux pump that shackles intracellular drug accumulation. Additionally, it is included in the dud of considerable antiviral and anticancer chemotherapies because of the multidrug resistance (MDR) phenomenon. In the search for prospective anticancer drugs that inhibit the ABCB1 transporter, the Natural Product Activity and Species Source (NPASS) database, containing >35,000 molecules, was explored for identifying ABCB1 inhibitors. The performance of AutoDock4.2.6 software to anticipate ABCB1 docking score and pose was first assessed according to available experimental data. The docking scores of the NPASS molecules were predicted against the ABCB1 transporter. Molecular dynamics (MD) simulations were conducted for molecules with docking scores lower than taxol, a reference inhibitor, pursued by molecular mechanics-generalized Born surface area (MM-GBSA) binding energy estimations. On the basis of MM-GBSA calculations, five compounds revealed promising binding affinities as ABCB1 inhibitors with ΔGbinding < −105.0 kcal/mol. The binding affinity and stability of the identified inhibitors were compared to the chemotherapeutic agent. Structural and energetical analyses unveiled great steadiness of the investigated inhibitors within the ABCB1 active site throughout 100 ns MD simulations. Conclusively, these findings point out that NPC104372, NPC475164, NPC2313, NPC197736, and NPC477344 hold guarantees as potential ABCB1 drug candidates and warrant further in vitro/in vivo tests