11,143 research outputs found

    Dispersal Dynamics in a Wind-Driven Benthic System

    Full text link
    Bedload and water column traps were used with simultaneous wind and water velocity measurements to study postlarval macrofaunal dispersal dynamics in Manukau Harbour, New Zealand. A 12-fold range in mean wind condition resulted in large differences in water flow (12-fold), sediment flux (285-fold), and trap collection of total number of individuals (95-fold), number of the dominant infaunal organism (84-fold for the bivalve Macomona liliana), and number of species (4-fold). There were very strong, positive relationships among wind condition, water velocity, sediment flux, and postlarval dispersal, especially in the bedload. Local density in the ambient sediment was not a good predictor of dispersal. Results indicate that postlarval dispersal may influence benthic abundance pat- terns over a range of spatial scales

    Transient intensity changes of cosmic rays beyond the heliospheric termination shock as observed at Voyager 1

    Get PDF
    This paper continues our studies of temporal variations of cosmic rays beyond the heliospheric termination shock (HTS) using Voyager 1 (V1) data when V1 was beyond 94 AU. This new study utilizes cosmic ray protons and electrons of several energies. Notable transient decreases of 5–50% are observed in galactic cosmic ray nuclei and electrons at V1 shortly after similar decreases are observed at Voyager 2 (V2) still inside the HTS. These decreases at V1 appear to be related to the large solar events in September 2005 and December 2006 and the resulting outward moving interplanetary shock. These two large interplanetary shocks were the largest observed at V2 after V1 crossed the HTS at the end of 2004. They were observed at V2 just inside the HTS at 2006.16 and 2007.43 providing timing markers for V1. From the timing of the intensity decreases observed at V1 as the shocks first reach the HTS and then later reach V1 itself, we can estimate the shock speed beyond the HTS to be between 240 and 300 km s^(−1) in both cases. From the timing of the decreases observed when the shock first reaches the HTS and then several months later encounters the heliopause, we can estimate the heliosheath thickness to be 31 ± 4 and 37 ± 6 AU, respectively, for the two sequences of three decreases seen at V1. These values, along with the distances to the HTS that are determined, give distances from the Sun to the heliopause of 121 ± 4 and 124 ± 6 AU, respectively

    At Voyager 1 Starting on about August 25, 2012 at a Distance of 121.7 AU From the Sun, a Sudden Disappearance of Anomalous Cosmic Rays and an Unusually Large Sudden Increase of Galactic Cosmic Ray H and He Nuclei and Electron Occurred

    Get PDF
    At the Voyager 1 spacecraft in the outer heliosphere, after a series of complex intensity changes starting at about May 8th, the intensities of both anomalous cosmic rays (ACR) and galactic cosmic rays (GCR) changed suddenly and decisively on August 25th (121.7 AU from the Sun). The ACR started the intensity decrease with an initial e-folding rate of intensity decrease of ~1 day. Within a matter of a few days, the intensity of 1.9-2.7 MeV protons and helium nuclei had decreased to less than 0.1 of their previous value and after a few weeks, corresponding to the outward movement of V1 by ~0.1 AU, these intensities had decreased by factors of at least 300-500 and are now lower than most estimates of the GCR spectrum for these lower energies and also at higher energies. The decrease was accompanied by large rigidity dependent anisotropies in addition to the extraordinary rapidity of the intensity changes. Also on August 25th the GCR protons, helium and heavier nuclei as well as electrons increased suddenly with the intensities of electrons reaching levels ~30-50% higher than observed just one day earlier. This increase for GCR occurred over ~1 day for the lowest rigidity electrons, and several days for the higher rigidity nuclei of rigidity ~0.5-1.0 GV. After reaching these higher levels the intensities of the GCR of all energies from 2 to 400 MeV have remained essentially constant with intensity levels and spectra that may represent the local GCR. These intensity changes will be presented in more detail in this, and future articles, as this story unfolds.Comment: 13 Pages, 5 Figure

    Termination shock particle spectral features

    Get PDF
    Spectral features of energetic H ions accelerated at the termination shock may be evidence of two components. At low energies the energy spectrum is ~E^(–1.55), with break at ~0.4 MeV to E^(–2.2). A second component appears above ~1 MeV with a spectrum of E^(–1.27) with a break at ~3.2 MeV. Even though the intensities upstream are highly variable, the same spectral break energies are observed, suggesting that these are durable features of the source spectrum. The acceleration processes for the two components may differ, with the lower energy component serving as the injection source for diffusive shock acceleration of the higher energy component. Alternatively, the spectral features may result from the energy dependence of the diffusion tensor that affects the threshold for diffusive shock acceleration

    Voyager observations of galactic and anomalous cosmic rays in the helioshealth

    Get PDF
    Anomalous cosmic rays display large temporal variations at the time and location where Voyager 1 (V1) crossed the heliospheric termination shock (2004.86) (94AU, 34°N). On a short time scale (3 months) there was a large decrease produced by a series of merged interaction regions (MIR), the first of which was associated with the intense Oct./Nov. 2003 solar events. On a longer time scale there is a remarkable correlation between changes in the galactic cosmic ray (GCR) intensity and those of 10–56 MeV/n ACR He and 30–56 MeV H extending over a 4.3 year period with the GCRs exhibiting their expected behavior over this part of the 11 and 22 year solar activity and heliomagnetic cycle. The relative changes in the ACR and GCR are the same for both the short term and long term variations. The comparative V1/V2 ACR and GCR spectra in the foreshock and heliosheath indicate that at this time most of the higher energy ACRs are not being accelerated near V1 but must have their source region elsewhere — possibly near the equatorial region of the TS as was suggested in our first paper on the TS crossing (1)

    Large periodic time variations of termination shock particles between ~0.5-20 mev and 6-14 mev electrons measured by the crs experiment on Voyager 2 as it crossed into the heliosheath in 2007: An example of freshly accelerated cosmic rays?

    Get PDF
    We have examined features in the structure of the heliosheath using the fine scale time variations of termination shock particles (TSP) between ~0.5 - 20 MeV and electrons between 2.5-14 MeV measured by the CRS instrument as the V2 spacecraft crossed the heliospheric termination shock in 2007. The very disturbed heliosheath at V2 is particularly noteworthy for strong periodic intensity variations of the TSP just after V2 crossed the termination shock (2007.66) reaching a maximum between 2007.75 and 2008.0. A series of 42/21 day periodicities was observed at V2 along with spectral changes of low energy TSP and the acceleration of 6-14 MeV electrons. Evidence is presented for the acceleration of TSP and electrons at the times of the 42/21 day periodicities just after V2 crossed the HTS. Spectra for TSP between 2-20 MeV and electrons between 2.5-14 MeV are derived for three time periods including the time of the HTS crossing. The energy spectra of TSP and electrons at these times of intensity peaks are very similar above ~3 MeV, with exponents of a power law spectrum between -3.0 and -3.6. The ratio of TSP intensities to electron intensities at the same energy is ~500. The electron intensity peaks and minima are generally out of phase with those of nuclei by ~1/2 of a 42 day cycle. These charge dependent intensity differences and the large periodic intensity changes could provide new clues as to a possible acceleration mechanism

    Particle acceleration by collisionless shocks containing large-scale magnetic-field variations

    Full text link
    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field has been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here, we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because perpendicular diffusion coefficient κ\kappa_\perp is generally much smaller than parallel diffusion coefficient κ\kappa_\parallel, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the "hot spots" of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the "hot spot" regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager's observation in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, and galactic cosmic rays accelerated by supernova blast waves, etc.Comment: accepted to Ap

    Addressing student models of energy loss in quantum tunnelling

    Full text link
    We report on a multi-year, multi-institution study to investigate student reasoning about energy in the context of quantum tunnelling. We use ungraded surveys, graded examination questions, individual clinical interviews, and multiple-choice exams to build a picture of the types of responses that students typically give. We find that two descriptions of tunnelling through a square barrier are particularly common. Students often state that tunnelling particles lose energy while tunnelling. When sketching wave functions, students also show a shift in the axis of oscillation, as if the height of the axis of oscillation indicated the energy of the particle. We find inconsistencies between students' conceptual, mathematical, and graphical models of quantum tunnelling. As part of a curriculum in quantum physics, we have developed instructional materials to help students develop a more robust and less inconsistent picture of tunnelling, and present data suggesting that we have succeeded in doing so.Comment: Originally submitted to the European Journal of Physics on 2005 Feb 10. Pages: 14. References: 11. Figures: 9. Tables: 1. Resubmitted May 18 with revisions that include an appendix with the curriculum materials discussed in the paper (4 page small group UW-style tutorial

    Anomalous cosmic rays in the heliosheath

    Get PDF
    We report on Voyager 1 and 2 observations of anomalous cosmic rays in the outer heliosphere. The energy spectrum of anomalous cosmic ray helium as each spacecraft crossed the solar wind termination shock into the heliosheath remained modulated. Assuming the intensity gradient between the two spacecraft is purely radial, we find that radial gradients in the heliosheath of He with 11.6–22.3 MeV/nuc and with ∼61–73MeV/nuc∼61–73 MeV/nuc are 4.9±1.2%/AU4.9±1.2%/AU and 0.0±0.5%/AU,0.0±0.5%/AU, respectively. Strong temporal variations of the 11.6–22.3 MeV/nuc He intensity at both spacecraft were observed in 2005 just after Voyager 1 crossed the termination shock and while Voyager 2 was upstream. After 2006.0, the intensity variations are more moderate and likely due to a combination of spatial and temporal variations. As of early 2008, the anomalous cosmic ray He energy spectrum has unfolded to what may be a source spectrum. The spectrum at Voyager 2 remains modulated. We examine three recent models of the origin of anomalous cosmic rays in light of these observations

    STEREO Observations of Energetic Neutral Hydrogen Atoms During the 2006 December 5 Solar Flare

    Get PDF
    We report the discovery of energetic neutral hydrogen atoms (ENAs) emitted during the X9 solar event of 2006 December 5. Beginning ~1 hr following the onset of this E79 flare, the Low Energy Telescopes (LETs) on both the STEREO A and B spacecraft observed a sudden burst of 1.6-15 MeV protons beginning hours before the onset of the main solar energetic particle event at Earth. More than 70% of these particles arrived from a longitude within ±10° of the Sun, consistent with the measurement resolution. The derived emission profile at the Sun had onset and peak times remarkably similar to the GOES soft X-ray profile and continued for more than an hour. The observed arrival directions and energy spectrum argue strongly that the particle events < 5 MeV were due to ENAs. To our knowledge, this is the first reported observation of ENA emission from a solar flare/coronal mass ejection. Possible origins for the production of ENAs in a large solar event are considered. We conclude that the observed ENAs were most likely produced in the high corona and that charge-transfer reactions between accelerated protons and partially stripped coronal ions are an important source of ENAs in solar events
    corecore