231 research outputs found

    The Effect of Star Formation on Molecular Clouds in Dwarf Irregular Galaxies: IC 10 and NGC 6822

    Full text link
    We have observed the 13CO J=2-1, 12CO J=2-1 and 12CO J=3-2 lines at a few locations in the dwarf irregular galaxies IC 10 and NGC 6822 using the James Clerk Maxwell Telescope. In addition, we report the first detection of the 13CO J=3-2 transition in a Local Group galaxy. These low metallicity environments appear to be porous to UV radiation and allow for more efficient heating of molecular gas by nearby HII regions. The high 12CO J=3-2/J=2-1 ratio in NGC 6822 suggests that the 12CO emission is optically thin in this region. This high line ratio is likely the result of its location inside a large HII region with low metallicity and low gas content. In IC 10 we observe structures on a variety of size scales that all appear to be gravitationally bound. This effect may help explain the rather high star formation rate in IC 10.Comment: 20 pages with 6 ps figures, accepted for publication in The Astrophysical Journa

    The Physical Conditions and Dynamics of the Interstellar Medium in the Nucleus of M83: Observations of CO and CI

    Get PDF
    This paper presents CI, CO J=4-3, and CO J=3-2 maps of the barred spiral galaxy M83 taken at the James Clerk Maxwell Telescope. Observations indicate a double peaked structure which is consistent with gas inflow along the bar collecting at the inner Lindblad resonance. This structure suggests that nuclear starbursts can occur even in galaxies where this inflow/collection occurs, in contrast to previous studies of barred spiral galaxies. However, the observations also suggest that the double peaked emission may be the result of a rotating molecular ring oriented nearly perpendicular to the main disk of the galaxy. The CO J=4-3 data indicate the presence of warm gas in the nucleus that is not apparent in the lower-J CO observations, which suggests that CO J=1-0 emission may not be a reliable tracer of molecular gas in starburst galaxies. The twelve CI/CO J=4-3 line ratios in the inner 24'' x 24'' are uniform at the 2 sigma level, which indicates that the CO J=4-3 emission is originating in the same hot photon-dominated regions as the CI emission. The CO J=4-3/J=3-2 line ratios vary significantly within the nucleus with the higher line ratios occurring away from peaks of emission along an arc of active star forming regions. These high line ratios (>1) likely indicate optically thin gas created by the high temperatures caused by star forming regions in the nucleus of this starburst galaxy.Comment: 15 pages with 10 figures. To appear in the August 10 1998 issue of The Astrophysical Journa

    A High Resolution Mosaic of Molecular Gas in Stephan's Quintet

    Full text link
    We present high resolution CO J=1-0 observations of the molecular gas in the Hickson Compact Group Stephan's Quintet (HCG92). Our observations consist of multiple pointing and mosaics covering all the regions where CO and star formation has been detected. Within the 100'' field of view centered on the eastern-most tidal tail, we detect three clumps of emission that may be partially resolved at our resolution of 8''; two of these are new detections not previously seen in ISM studies of this region. Two of these clumps lie in the optical tidal tail, while the third lies to the southeast and is coincident with a large HI feature, but does not correspond to any features at other wavelengths. We also tentatively detect CO emission from the star forming regions in the ``Old Tail'' corresponding to recent star formation activity detected in recent UV and Hα\alpha observations. Observations of the rest of the compact group do not show detections even though strong emission was detected with single dish telescopes, which suggests the CO emission originates from a diffuse molecular gas cloud or from more at least three separate clumps with separations of greater than around 3 kpc.Comment: 23 pages, 6 figures, to appear in the ApJ 1 November 2005, v633, 1 issue. Full resolution versions of figures available at http://cfa-www.harvard.edu/~gpetitpas/hcg92

    Molecular Gas in Candidate Double-Barred Galaxies II. Cooler, Less Dense Gas Associated with Stronger Central Concentrations

    Full text link
    We have performed a multi-transition CO study of the centers of seven double-barred galaxies that exhibit a variety of molecular gas morphologies to determine if the molecular gas properties are correlated with the nuclear morphology and star forming activity. Near infrared galaxy surveys have revealed the existence of nuclear stellar bars in a large number of barred or lenticular galaxies. High resolution CO maps of these galaxies exhibit a wide range of morphologies. Recent simulations of double-barred galaxies suggest that variations in the gas properties may allow it to respond differently to similar gravitational potentials. We find that the 12CO J=3-2/J=2-1 line ratio is lower in galaxies with centrally concentrated gas distributions and higher in galaxies with CO emission dispersed around the galactic center in rings and peaks. The 13CO/12CO J=2-1 line ratios are similar for all galaxies, which indicates that the J=3-2/J=2-1 line ratio is tracing variations in gas temperature and density, rather than variations in optical depth. There is evidence that the galaxies which contain more centralized CO distributions are comprised of molecular gas that is cooler and less dense. Observations suggest that the star formation rates are higher in the galaxies containing the warmer, denser, less centrally concentrated gas. It is possible that either the bar dynamics are responsible for the variety of gas distributions and densities (and hence the star formation rates) or that the star formation alone is responsible for modifying the gas properties.Comment: 27 pages + 6 figures; to appear in the April 20, 2003 issue of Ap

    Molecular Gas in Candidate Double Barred Galaxies III. A Lack of Molecular Gas?

    Full text link
    Most models of double-barred galaxies suggest that a molecular gas component is crucial for maintaining long-lived nuclear bars. We have undertaken a CO survey in an attempt to determine the gas content of these systems and to locate double barred galaxies with strong CO emission that could be candidates for high resolution mapping. We observed 10 galaxies in CO J=2-1 and J=3-2 and did not detect any galaxies that had not already been detected in previous CO surveys. We preferentially detect emission from galaxies containing some form of nuclear activity. Simulations of these galaxies require that they contain 2% to 10% gas by mass in order to maintain long-lived nuclear bars. The fluxes for the galaxies for which we have detections suggest that the gas mass fraction is in agreement with these models requirements. The lack of emission in the other galaxies suggests that they contain as little as 7 x 10^6 solar masses of molecular material which corresponds to < 0.1% gas by mass. This result combined with the wide variety of CO distributions observed in double barred galaxies suggests the need for models of double-barred galaxies that do not require a large, well ordered molecular gas component.Comment: 17 pages (3 figures embedded on pg 17). To appear in the March 10 issue of the Astrophysical Journa

    SMA Imaging of CO(3-2) Line and 860 micron Continuum of Arp 220 : Tracing the Spatial Distribution of Luminosity

    Full text link
    We used the Submillimeter Array (SMA) to image 860 micron continuum and CO(3-2) line emission in the ultraluminous merging galaxy Arp 220, achieving a resolution of 0.23" (80 pc) for the continuum and 0.33" (120 pc) for the line. The CO emission peaks around the two merger nuclei with a velocity signature of gas rotation around each nucleus, and is also detected in a kpc-size disk encompassing the binary nucleus. The dust continuum, in contrast, is mostly from the two nuclei. The beam-averaged brightness temperature of both line and continuum emission exceeds 50 K at and around the nuclei, revealing the presence of warm molecular gas and dust. The dust emission morphologically agrees with the distribution of radio supernova features in the east nucleus, as expected when a starburst heats the nucleus. In the brighter west nucleus, however, the submillimeter dust emission is more compact than the supernova distribution. The 860 micron core, after deconvolution, has a size of 50-80 pc, consistent with recent 1.3 mm observations, and a peak brightness temperature of (0.9-1.6)x10^2 K. Its bolometric luminosity is at least 2x10^{11} Lsun and could be ~10^{12} Lsun depending on source structure and 860 micron opacity, which we estimate to be of the order of tau_{860} ~ 1 (i.e., N_{H_2} ~ 10^{25} cm^{-2}). The starbursting west nuclear disk must have in its center a dust enshrouded AGN or a very young starburst equivalent to hundreds of super star clusters. Further spatial mapping of bolometric luminosity through submillimeter imaging is a promising way to identify the heavily obscured heating sources in Arp 220 and other luminous infrared galaxies.Comment: ApJ. in press. 26 pages, 10 figure

    The Spectral Energy Distribution of CO lines in M82

    Full text link
    We present an analysis of the excitation conditions of the molecular gas in the streamers and the outflow of M82 based on observations obtained at the IRAM 30m telescope. Our analysis of J=1-0 and J=2-1 transitions of CO and 13CO and the CO(3-2) line in 13 regions outside the central starburst disk shows that the gas density within the streamer/outflow system is about an orderof magnitude lower (n(H2) ~ 10^3 cm^-3) than in the central molecular disk. We have used an LVG model and data from the literature to constrain the flux density in each CO transition (the `CO line SED') arising from the streamer/outflow system and the central starburst disk itself. Globally, we find that the CO flux density up to the J=3-2 line is dominated by the diffuse outer regions while lines above the J=5-4 transition are almost exclusively emitted by the central starburst disk. We compare the CO line SED of M82 to CO observations of galaxies at high redshift and suggest that small high-J/low-J CO flux density ratios (observed in some of these sources) are not necessarily caused by a different excitation of the central molecular gas concentration, but may result from an additional, more extended and diffuse gas reservoir around these systems, reminiscent of the situation in M82.Comment: 12 pages, 7 figures, accepted by A&

    A multi-transition HCN and HCO+ study of 12 nearby active galaxies: AGN versus SB environments

    Full text link
    Recent studies have indicated that the HCN-to-CO(J=1-0) and HCO+-to-HCN(J=1-0) ratios are significantly different between galaxies with AGN (active galactic nucleus) and SB (starburst) signatures. In order to study the molecular gas properties in active galaxies and search for differences between AGN and SB environments, we observed the HCN(J=1-0), (J=2-1), (J=3-2), HCO+(J=1-0) and HCO+(J=3-2), emission with the IRAM 30m in the centre of 12 nearby active galaxies which either exhibit nuclear SB and/or AGN signatures. Consistent with previous results, we find a significant difference of the HCN(J=2-1)-to-HCN(J=1-0), HCN(J=3-2)-to-HCN(J=1-0), HCO+(J=3-2)-to-HCO+(J=3-2), and HCO+-to-HCN intensity ratios between the sources dominated by an AGN and those with an additional or pure central SB: the HCN, HCO+ and HCO+-to-HCN intensity ratios tend to be higher in the galaxies of our sample with a central SB as opposed to the pure AGN cases which show rather low intensity ratios. Based on an LVG analysis of these data, i.e., assuming purely collisional excitation, the (average) molecular gas densities in the SB dominated sources of our sample seem to be systematically higher than in the AGN sources. The LVG analysis seems to further support systematically higher HCN and/or lower HCO+ abundances as well as similar or higher gas temperatures in AGN compared to the SB sources of our sample. Also, we find that the HCN-to-CO ratios decrease with increasing rotational number J for the AGN while they stay mostly constant for the SB sources.Comment: accepted for publication in ApJ; 20 pages, 7 figures; in emulateApJ forma
    corecore