58 research outputs found
A new approach to local hardness
The applicability of the local hardness as defined by the derivative of the
chemical potential with respect to the electron density is undermined by an
essential ambiguity arising from this definition. Further, the local quantity
defined in this way does not integrate to the (global) hardness - in contrast
with the local softness, which integrates to the softness. It has also been
shown recently that with the conventional formulae, the largest values of local
hardness do not necessarily correspond to the hardest regions of a molecule.
Here, in an attempt to fix these drawbacks, we propose a new approach to define
and evaluate the local hardness. We define a local chemical potential,
utilizing the fact that the chemical potential emerges as the additive constant
term in the number-conserving functional derivative of the energy density
functional. Then, differentiation of this local chemical potential with respect
to the number of electrons leads to a local hardness that integrates to the
hardness, and possesses a favourable property; namely, within any given
electron system, it is in a local inverse relation with the Fukui function,
which is known to be a proper indicator of local softness in the case of soft
systems. Numerical tests for a few selected molecules and a detailed analysis,
comparing the new definition of local hardness with the previous ones, show
promising results.Comment: 30 pages (including 6 figures, 1 table
Plant polysaccharide degrading enzyme system of Thermobifida cellulosilytica TB100<sup>T</sup> revealed by de novo genome project data
Thermobifidas are thermophilic, aerobic, lignocellulose decomposing actinomycetes. The Thermobifida genus includes four species: T. fusca, T. alba, T. cellulosilytica, and T. halotolerans. T. fusca YX is the far best characterized strain of this taxon and several cellulases and hemicellulases have been cloned from it for industrial purposes targeting paper industry, biofuel, and feed applications. Unfortunately, sequence data of such enzymes are almost exclusively restricted to this single species; however, we demonstrated earlier by zymography that other T. alba and T. cellulosilytica strains encode the same enzyme sets. Recently, the advances in whole genome sequencing by the use of next generation genomics platforms accelerated the selection process of valuable hydrolases from uncharacterized bacterial species for cloning purposes. For this purpose T. cellulosilytica TB100T type strain was chosen for de novo genome sequencing. We have assembled the genome of T. cellulosilytica strain TB100T into 168 contigs and 19 scaffolds, with reference length of 4 327 869 bps, 3 589 putative coding sequences, 53 tRNAs, and 4 rRNAs. The analysis of the annotated genome revealed the existence of 27 putative hydrolases belonging to 14 different glycoside hydrolase (GH) families. The investigation of identified, cloned, and heterologously multiple cellulases, mannanases, xylanases, and amylases may result in industrial applications beside gaining useful basic research related information
Painful skin lesions and squamous cell carcinoma predict overall mortality risk in organ transplant recipients:a cohort study
Item does not contain fulltextBACKGROUND: Organ transplant recipients (OTRs) have a highly increased risk of cutaneous squamous cell carcinomas (SCCs). Sensation of pain in cutaneous tumours is a powerful patient-reported warning signal for invasive SCCs in OTRs. OBJECTIVES: To investigate the impact of painful vs. painless skin lesions and SCC vs. other skin lesions on the overall mortality risk in OTRs. METHODS: We followed 410 OTRs from 10 different centres across Europe and North America between 2008 and 2015. These patients had been enrolled in an earlier study to define clinically meaningful patient-reported warning signals predicting the presence of SCC, and had been included if they had a lesion requiring histological diagnosis. Cumulative incidences of overall mortality were calculated using Kaplan-Meier survival analysis, and risk factors were analysed with Cox proportional hazard analysis. RESULTS: There was an increased overall mortality risk in OTRs who reported painful vs. painless skin lesions, with a hazard ratio (HR) of 1.6 [95% confidence interval (CI) 0.97-2.7], adjusted for age, sex and other relevant factors. There was also an increased overall mortality risk in OTRs diagnosed with SCC compared with other skin lesions, with an adjusted HR of 1.7 (95% CI 1.0-2.8). Mortality due to internal malignancies and systemic infections appeared to prevail in OTRs with SCC. CONCLUSIONS: We suggest that OTRs have an increased overall mortality risk if they develop painful skin lesions or are diagnosed with cutaneous SCC
The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish
Early steps of embryo development are directed by maternal gene products and trace levels of zygotic gene activity in vertebrates. A major activation of zygotic transcription occurs together with degradation of maternal mRNAs during the midblastula transition in several vertebrate systems. How these processes are regulated in preparation for the onset of differentiation in the vertebrate embryo is mostly unknown. Here, we studied the function of TATA-binding protein (TBP) by knock down and DNA microarray analysis of gene expression in early embryo development. We show that a subset of polymerase II-transcribed genes with ontogenic stage-dependent regulation requires TBP for their zygotic activation. TBP is also required for limiting the activation of genes during development. We reveal that TBP plays an important role in the degradation of a specific subset of maternal mRNAs during late blastulation/early gastrulation, which involves targets of the miR-430 pathway. Hence, TBP acts as a specific regulator of the key processes underlying the transition from maternal to zygotic regulation of embryogenesis. These results implicate core promoter recognition as an additional level of differential gene regulation during development
DNA methylation profiles delineate epigenetic heterogeneity in seminoma and non-seminoma
Background: It remains important to understand the biology and identify biomarkers for less studied cancers like testicular cancer. The purpose of this study was to determine the methylation frequency of several cancer-related genes in different histological types of testicular cancer and normal testis tissues (NT). Methods: DNA was isolated from 43 seminomas (SEs), 14 non-SEs (NSEs) and 23 NT, and was assayed for promoter methylation status of 15 genes by quantitative methylation-specific PCR. The methylation status was evaluated for an association with cancer, and between SEs and NSEs. Results: We found differential methylation pattern in SEs and NSEs. MGMT, VGF, ER-Β and FKBP4 were predominately methylated in NSEs compared with SEs. APC and hMLH1 are shown to be significantly more methylated in both subtypes in comparison with NT. When combining APC, hMLH1, ER-Β and FKBP4, it is possible to identify 86% of the NSEs, whereas only 7% of the SEs. Conclusions: Our results indicate that the methylation profile of cancer-associated genes in testicular cancer correlates with histological types and show cancer-specific pattern for certain genes. Further methylation analysis, in a larger cohort is needed to elucidate their role in testicular cancer development and potential for therapy, early detection and disease monitoring
A COL17A1 Splice-Altering Mutation Is Prevalent in Inherited Recurrent Corneal Erosions
PurposeCorneal dystrophies are a genetically heterogeneous group of disorders. We previously described a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the potential function of the candidate genes using the human and zebrafish cornea.DesignCase series study of 4 white families with a similar ERED. An experimental study was performed on human and zebrafish tissue to examine the putative biological function of candidate genes.ParticipantsFour ERED families, including 28 affected and 17 unaffected individuals.MethodsHumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members. Next-generation exome sequencing was performed on an uncle–niece pair. Segregation of potential causative mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohistochemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos.Main Outcome MeasuresLinkage microarray, exome analysis, DNA sequence analysis, immunohistochemistry, in situ hybridization, and morpholino-induced genetic knockdown results.ResultsLinkage microarray analysis identified a candidate region on chromosome chr10:12,576,562–112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic variants in this linkage region. Two variants segregated in 06NZ–TRB1 with ERED: COL17A1 c.3156C→T and DNAJC9 c.334G→A. The COL17A1 c.3156C→T variant segregated in all 4 ERED families. We showed biologically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal phenotype.ConclusionsThe COL17A1 c.3156C→T variant is the likely causative mutation in our recurrent corneal erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same COL17A1 c.3156C→T variant recently was identified in a separate pedigree with ERED. Our study expands the phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal epithelium
Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes
The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the Tcell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases
Role of DNA methylation in head and neck cancer
Head and neck cancer (HNC) is a heterogenous and complex entity including diverse anatomical sites and a variety of tumor types displaying unique characteristics and different etilogies. Both environmental and genetic factors play a role in the development of the disease, but the underlying mechanism is still far from clear. Previous studies suggest that alterations in the genes acting in cellular signal pathways may contribute to head and neck carcinogenesis. In cancer, DNA methylation patterns display specific aberrations even in the early and precancerous stages and may confer susceptibility to further genetic or epigenetic changes. Silencing of the genes by hypermethylation or induction of oncogenes by promoter hypomethylation are frequent mechanisms in different types of cancer and achieve increasing diagnostic and therapeutic importance since the changes are reversible. Therefore, methylation analysis may provide promising clinical applications, including the development of new biomarkers and prediction of the therapeutic response or prognosis. In this review, we aimed to analyze the available information indicating a role for the epigenetic changes in HNC
- …