217 research outputs found
Comparison of visual outcomes, spectacles dependence and patient satisfaction of multifocal and accommodative intraocular lenses: innovative perspectives for maximal refractive-oriented cataract surgery
BACKGROUND: The aim of this study was to evaluate visual outcomes for different working distances (far, 60 cm and 33 cm) and impact on vision quality of multifocal IOLs AcrySof ResTOR SN6AD1 and SN6AD3 (Alcon, Inc., Fort Worth, Texas, USA) as well as REVIEW FIL611PV multifocal and OPTOFLEX FIL618 accommodative IOLs (Soleko, Ltd., Rome, Italy) in patients undergoing bilateral phacoemulsification. METHODS: In this observational prospective study 63 patients undergoing binocular cataract surgery were divided into four groups for implantation of one of the IOLs under evaluation. Visual outcomes were evaluated at 1 day, 7 days, 1 month, 3 months and 6 months after surgery. Patients’ satisfaction and spectacle independence were evaluated with questionnaires administered at the 6-months follow-up. RESULTS: Improvements in visual acuity for the three working distances were statistically significant in all cases compared to the preoperative status, especially after binocular implantation. The AcrySof ReSTOR SN6AD1 multifocal IOL provided the best visual acuity results and tolerability for all working distances. While performing worse than SN6AD1, FIL611PV and FIL618 provided better uncorrected visual acuity and spectacles independence for intermediate/close-up and far distances respectively, in comparison with the SN6AD3 group. CONCLUSIONS: SN6AD1 was confirmed the best choice for all working distances. However, FIL611PV IOL may represent a valid and more cost-effective alternative, especially if surgeons intend to prioritize spectacle independence and patient autonomy at intermediate and close-up distances, in accordance to specific needs and requests. TRIAL REGISTRATION: Trial retrospectively registered in ISRCTN Registry on 02/02/2017. TRN: ISRCTN14145737
Glaucoma: Biological trabecular and neuroretinal pathology with perspectives of therapy innovation and preventive diagnosis
Glaucoma is a common degenerative disease affecting retinal ganglion cells (RGC) and optic nerve axons, with progressive and chronic course. It is one of the most important reasons of social blindness in industrialized countries. Glaucoma can lead to the development of irreversible visual field loss, if not treated. Diagnosis may be difficult due to lack of symptoms in early stages of disease. In many cases, when patients arrive at clinical evaluation, a severe neuronal damage may have already occurred. In recent years, newer perspective in glaucoma treatment have emerged. The current research is focusing on finding newer drugs and associations or better delivery systems in order to improve the pharmacological treatment and patient compliance. Moreover, the application of various stem cell types with restorative and neuroprotective intent may be found appealing (intravitreal autologous cellular therapy). Advances are made also in terms of parasurgical treatment, characterized by various laser types and techniques. Moreover, recent research has led to the development of central and peripheral retinal rehabilitation (featuring residing cells reactivation and replacement of defective elements), as well as innovations in diagnosis through more specific and refined methods and inexpensive tests
An interdisciplinary study of the estuarine and coastal oceanography of Block Island Sound and adjacent New York coastal waters
The author has identified the following significant results. Photo-optical additive color quantitative measurements were made of ERTS-1 reprocessed positives of New York Bight and Block Island Sound. Regression of these data on almost simultaneous ship sample data of water's physical, chemical, biological, and optical properties showed that ERTS bands 5 and 6 can be used to predict the absolute value of the total number of particles and bands 4 and 5 to predict the relative extinction coefficient in New York Bight. Water masses and mixing patterns in Block Island Sound heretofore considered transient were found to be persistent phenomena requiring revision of existing mathematical and hydraulic models
The Impact of Artificial Intelligence and Deep Learning in Eye Diseases: A Review
Artificial intelligence (AI) is a subset of computer science dealing with the development and training of algorithms that try to replicate human intelligence. We report a clinical overview of the basic principles of AI that are fundamental to appreciating its application to ophthalmology practice. Here, we review the most common eye diseases, focusing on some of the potential challenges and limitations emerging with the development and application of this new technology into ophthalmology
Body measurement estimations using 3D scanner for individuals with severe motor impairments
In biomechanics, a still unresolved question is how to estimate with enough accuracy the volume and mass of each body segment of a subject. This is important for several applications ranging from the rehabilitation of injured subjects to the study of athletic performances via the analysis of the dynamic inertia of each body segment. However, traditionally this evaluation is done by referring to anthropometric tables or by approximating the volumes using manual measurements. We propose a novel method based on the 3D reconstruction of the subject’s body using the commercial low-cost camera Kinect v2. The software developed performs body segment separation in a few minutes leveraging alpha shape approximation of 3D polyhedrons to quickly compute a Montecarlo volume estimation. The procedure was evaluated on a total of 30 healthy subjects and the resulting segments’ lengths and masses were compared with the literature
- …