78 research outputs found

    Radiation therapy and photodynamic therapy for biliary tract and ampullary carcinomas

    Get PDF
    The purpose of radiation therapy for unresectable biliary tract cancer is to prolong survival or prolong stent patency, and to provide palliation of pain. For unresectable bile duct cancer, there are a number of studies showing that radiation therapy is superior to the best supportive care. Although radiation therapy is used in many institutions, no large randomized controlled trials (RCTs) have been performed to date and the evidence level supporting the superiority of this treatment is low. Because long-term relief of jaundice is difficult without using biliary stenting, a combination of radiation therapy and stent placement is commonly used. As radiation therapy, external-beam radiation therapy is usually performed, but combined use of intraluminal brachytherapy with external beam radiation therapy is more useful for making the treatment more effective. There are many reports demonstrating improved response rates as well as extended survival and time to recurrence achieved by this combination therapy. Despite the low level of the evidence, this combination therapy is performed at many institutions. It is expected that multiinstitutional RCTs will be carried out. Unresectable gallbladder cancer with a large focus is usually extensive, and normal organs with high radio sensitivity exist contiguously with it. Therefore, only limited anticancer effects are to be expected from external beam radiation therapy for this type of cancer. The number of reports on ampullary cancer is small and the role of radiation therapy in this cancer has not been established. Combination treatment for ampullary cancer consists of either a single use of intraoperative radiation therapy, postoperative external beam radiation therapy or intraluminal brachytherapy, or a combination of two or three of these therapies. Intraoperative radiation therapy is superior in that it enables precise irradiation to the target site, thereby protecting adjacent highly radiosensitive normal tissues from irradiation. There are reports showing extended survival, although not significant, in groups undergoing intraoperative or postoperative radiation therapy compared with groups without radiation therapy. To date, there are no reports of large RCTs focusing on the significance of radiation therapy as a postoperative adjuvant treatment, so its usefulness as a postoperative adjuvant treatment is not proven. An alternative treatment is photodynamic therapy. There is an RCT demonstrating that, in unresectable bile duct cancer, extended survival and improved quality of life (QOL) have been achieved through a combination of photodynamic therapy and biliary stenting, compared with biliary stenting alone. Results from large RCTs are desired

    Association of the Chromosome Replication Initiator DnaA with the Escherichia coli Inner Membrane In Vivo: Quantity and Mode of Binding

    Get PDF
    DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein’s domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication

    Le Badinage waltz /

    No full text
    In bound volumes: Copyright Deposits 1820-186

    Molt's progressive lessons /

    No full text
    In bound volumes: Copyright Deposits 1820-186

    Swiss boy /

    No full text
    In bound volumes: Copyright Deposits 1820-186

    Six gallopades /

    No full text
    In bound volumes: Copyright Deposits 1820-186

    Investigation of bubble formation in arteries of gas-controlled heatpipes

    No full text
    corecore