55 research outputs found

    Influence of oxygen tension on myocardial performance. Evaluation by tissue Doppler imaging

    Get PDF
    BACKGROUND: Low O(2 )tension dilates coronary arteries and high O(2 )tension is a coronary vasoconstrictor but reports on O(2)-dependent effects on ventricular performance diverge. Yet oxygen supplementation remains first line treatment in cardiovascular disease. We hypothesized that hypoxia improves and hyperoxia worsens myocardial performance. METHODS: Seven male volunteers (mean age 38 ± 3 years) were examined with echocardiography at respiratory equilibrium during: 1) normoxia (≈21% O(2), 79% N(2)), 2) while inhaling a hypoxic gas mixture (≈11% O(2), 89% N(2)), and 3) while inhaling 100% O(2). Tissue Doppler recordings were acquired in the apical 4-chamber, 2-chamber, and long-axis views. Strain rate and tissue tracking displacement analyses were carried out in each segment of the 16-segment left ventricular model and in the basal, middle and apical portions of the right ventricle. RESULTS: Heart rate increased with hypoxia (68 ± 4 bpm at normoxia vs. 79 ± 5 bpm, P < 0.001) and decreased with hyperoxia (59 ± 5 bpm, P < 0.001 vs. normoxia). Hypoxia increased strain rate in four left ventricular segments and global systolic contraction amplitude was increased (normoxia: 9.76 ± 0.41 vs hypoxia: 10.87 ± 0.42, P < 0.001). Tissue tracking displacement was reduced in the right ventricular segments and tricuspid regurgitation increased with hypoxia (7.5 ± 1.9 mmHg vs. 33.5 ± 1.8 mmHg, P < 0.001). The TEI index and E/E' did not change with hypoxia. Hyperoxia reduced strain rate in 10 left ventricular segments, global systolic contraction amplitude was decreased (8.83 ± 0.38, P < 0.001 vs. normoxia) while right ventricular function was unchanged. The spectral and tissue Doppler TEI indexes were significantly increased but E/E' did not change with hyperoxia. CONCLUSION: Hypoxia improves and hyperoxia worsens systolic myocardial performance in healthy male volunteers. Tissue Doppler measures of diastolic function are unaffected by hypoxia/hyperoxia which support that the changes in myocardial performance are secondary to changes in vascular tone. It remains to be settled whether oxygen therapy to patients with heart disease is a consistent rational treatment

    La dynamique d'un réseau de prévention psychique précoce

    No full text

    Application de l'U.O.M. (Unite Ovine Mediterraneenne) dans les essais realises sur les prairies de Crau.

    No full text
    National audienc

    Different aspects of pork curing in Corsica

    No full text

    Impact of ultrasound screening for facial cleft on mother-child relationships

    No full text
    SCOPUS: cp.kFLWINinfo:eu-repo/semantics/publishe

    Impact cumulé des petites retenues : une revue des évaluations et méthodes

    No full text
    International audienceDue to a reduce cost, availability of many favorablefavourable locations, easy access due to proximity, the number of small reservoirs has increased. The cumulative impact of reservoirs in a catchment is considered as the modifications induced by the reservoir network taken as a whole. The impact may exert on the flow regimes and sediment, nutrient and contaminant transfer, and thereby modify the ecological behaviour of the aquatic environment, the continuity of rivers and the habitats of organisms living in them. The cumulative impact is not necessarily the sum of individual and local modifications, because reservoirs may be inter-dependent. This is the case for instance in cascading reservoirs along a stream course. The cumulative impact is not straightforward to estimate, even solely considering hydrological impact, in part due to the difficulty to collect data on the functioning of those reservoirs. However, there are evidences that the cumulative impacts are not negligible. This work is dedicated to a review of the studies dealing with the cumulative impact of small reservoirs on hydrology, focusing on the methodology as well as on the way the impacts are reported. It is shown that similar densities of small reservoirs can lead to different impacts on the quantitative water resource in different regions. This is probably due to the hydro-climatic conditions, and makes it difficult to define simple indicators to provide a first guess of the cumulative impact. The impacts vary also on time, with a more intense reduction of the river discharge during the dry years than during the wet years. This is certainly an important point to take into account in a context of climate change
    corecore