1,552 research outputs found

    Bulk Aluminum at High Pressure: A First-Principles Study

    Full text link
    The behavior of metals at high pressure is of great importance to the fields of shock physics, geophysics, astrophysics, and nuclear materials. In order to further understand the properties of metals at high pressures we studied the equation of state of aluminum using first-principles techniques up to 2500 GPa, pressures within reach of the planned L.L.N.L. National Ignition Facility. Our simulations use density-functional theory and density-functional perturbation theory in the generalized gradient approximation at 0K. We found core overlaps to become relevant beyond pressures of 1200 GPa. The equations of state for three phases (fcc, bcc, and hcp) were calculated predicting the fcc-hcp, fcc-bcc, and hcp-bcc transitions to occur at 215 GPa, 307 GPa, and 435 GPa respectively. From the phonon dispersions at increasing pressure, we predict a softening of the lowest transverse acoustic vibrational mode along the [110] direction, which corresponds to a Born instability of the fcc phase at 725 GPa.Comment: 4 pages, 5 figures, accepted to Phys. Rev. B as a Brief Report. This version has update many figures. Moreover we provided updated and more accurate numbers based on further in-depth analyses of potential computational error

    Angular distributions in J/ψ→ppˉπ0(η)J/\psi\to p\bar{p}\pi^{0}(\eta) decays

    Get PDF
    The differential decay rates of the processes J/ψ→ppˉπ0J/\psi\to p\bar{p}\pi^{0} and J/ψ→ppˉηJ/\psi\to p\bar{p}\eta close to the ppˉp\bar{p} threshold are calculated with the help of the NNˉN\bar{N} optical potential. The same calculations are made for the decays of ψ(2S)\psi(2S). We use the potential which has been suggested to fit the cross sections of NNˉN\bar{N} scattering together with NNˉN\bar{N} and six pion production in e+e−e^{+}e^{-} annihilation close to the ppˉp\bar{p} threshold. The ppˉp\bar{p} invariant mass spectra is in agreement with the available experimental data. The anisotropy of the angular distributions, which appears due to the tensor forces in the NNˉN\bar{N} interaction, is predicted close to the ppˉp\bar{p} threshold. This anisotropy is large enough to be investigated experimentally. Such measurements would allow one to check the accuracy of the model of NNˉN\bar{N} interaction.Comment: 10 pages, 8 figure

    Relativistic effects in the processes of heavy quark fragmentation

    Full text link
    In the framework based on the quasipotential method and relativistic quark model a new covariant expression for the heavy quark fragmentation amplitude to fragment into the pseudoscalar and vector S-wave heavy mesons is obtained. It contains all possible relativistic corrections including the terms connected with the transformation law of the bound state wave function to the reference frame of the moving meson. Relativistic corrections of order {\bf p}^2/m^2 to the heavy quark fragmentation distributions into (\bar c c), (\bar b c) and (\bar b b) states are calculated as functions of the longitudinal momentum fraction z and the transverse momentum p_T relative to the jet axis.Comment: 23 pages, 6 figure

    Relativistic Coulomb Green's function in dd-dimensions

    Full text link
    Using the operator method, the Green's functions of the Dirac and Klein-Gordon equations in the Coulomb potential −Zα/r-Z\alpha/r are derived for the arbitrary space dimensionality dd. Nonrelativistic and quasiclassical asymptotics of these Green's functions are considered in detail.Comment: 9 page

    High-energy expansion of Coulomb corrections to the e+e- photoproduction cross section

    Full text link
    First correction to the high-energy asymptotics of the total e+e−e^+e^- photoproduction cross section in the electric field of a heavy atom is derived with the exact account of this field. The consideration is based on the use of the quasiclassical electron Green function in an external electric field. The next-to-leading correction to the cross section is discussed. The influence of screening on the Coulomb corrections is examined in the leading approximation. It turns out that the high-energy asymptotics of the corresponding correction is independent of the photon energy. In the region where both produced particles are relativistic, the corrections to the high-energy asymptotics of the electron (positron) spectrum are derived. Our results for the total cross section are in good agreement with experimental data for photon energies down to a few MeVMeV. In addition, the corrections to the bremsstrahlung spectrum are obtained from the corresponding results for pair production.Comment: 22 pages, 7 figures, RevTeX.Typos are corrected. The numerical results, figures and conclusions remain unchanged as they were obtained using correct formula

    Ab initio Investigation of Elasticity and Stability of Metal Aluminum

    Full text link
    On the basis of the pseudopotential plane-wave(PP-PW) method in combination with the local-density-functional theory(LDFT), complete stress-strain curves for the uniaxial loading and uniaxial deformation along the [001] and [111] directions, and the biaxial proportional extension along [010] and [001] of aluminium are obtained. During the uniaxial loading, certain general behaviors of energy versus stretch and the load versus the stretch are confirmed; in each acse, there exist three special unstressed structures: f.c.c., b.c.c. and f.c.t. for [001]; f.c.c., s.c. and b.c.c. for [111]. Using stability criteria, we find that all of these state are unstable, and always occur together with shear instability, except the natural f.c.c. structure. A Bain transformation from the stable f.c.c. structure to the stable b.c.c. configuration cannot be obtained by uniaxial compression along any equivalent [001] and [111] direction. The tensile strength are similar for the two directions. For the higher energy barrier of [111] direction, the compressive strength is greater than that for the [001] direction. With increase in the ratio of the biaxial proportional extension, the stress and tensile strength increase; however, the critical strain does not change significantly. Our results add to the existing ab initio database for use in fitting and testing interatomic potentials.Comment: 9 Pages in Revtex and 11 Eps figure

    Corrections to deuterium hyperfine structure due to deuteron excitations

    Full text link
    We consider the corrections to deuterium hyperfine structure originating from the two-photon exchange between electron and deuteron, with the deuteron excitations in the intermediate states. In particular, the motion of the two intermediate nucleons as a whole is taken into account. The problem is solved in the zero-range approximation. The result is in good agreement with the experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe
    • …
    corecore