9,517 research outputs found

    Local order and magnetic field effects on the electronic properties of disordered binary alloys in the Quantum Site Percolation limit

    Full text link
    Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following `finite-size scaling' ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties, and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS.Comment: 13 pages, 9 figures, 31 references, RevTex preprint, submitted to Phys. Rev.

    Ongoing Mass Transfer in the Interacting Galaxy Pair NGC 1409/10

    Full text link
    I present two-band HST STIS imaging, and WIYN spectral mapping, of ongoing mass transfer in the interacting galaxy pair NGC 1409/10 (where NGC 1410 is the Seyfert galaxy also catalogued as III Zw 55). Archival snapshot WFPC2 imaging from the survey by Malkan et al. showed a dust feature stretching between the galaxies, apparently being captured by NGC 1409. The new images allow estimates of the mass being transferred and rate of transfer. An absorption lane typically 0.25" (100 pc) wide with a representative optical depth tau_B = 0.2 cuts across the spiral structure of NGC 1410, crosses the 7-kpc projected space between the nuclei, wraps in front of and, at the limits of detection, behind NGC 1409, and becomes a denser (tau_B = 0.4) polar feature around the core of NGC 1409. Combination of extinction data in two passbands allows a crude three-dimensional recovery of the dust structure, supporting the front/back geometry derived from colors and extinction estimates. The whole feature contains of order 10610^6 solar masses in dust, implying about 2x10^7 solar masses of gas, requiring a mass transfer rate averaging ~1 solar mass per year unless we are particularly unlucky in viewing angle. Curiously, this demonstrable case of mass transfer seems to be independent of the occurrence of a Seyfert nucleus, since the Seyfert galaxy in this pair is the donor of the material. Likewise, the recipient shows no signs of recent star formation from incoming gas, although NGC 1410 has numerous luminous young star clusters and widespread H-alpha emission.Comment: 27 pages, 9 figures. Accepted for the Astronomical Journal, March 200

    Assessing the galaxy population out to z ~ 2 using the Hubble Deep Field South

    Get PDF
    In this work we use the Hubble Deep Field South (HDF-S) version 2 images to assess the galaxy population out to z ~ 2. We have used two methods of templates fitting of the spectral energy distributions to obtain photometric redshifts and classify the objects. The Bayesian photometric redshifts gave better results when compared with 54 spectroscopic redshifts available in the literature. Analysis of the rest-frame colour distribution shows a bimodality out to z ~ 1.4. We separated our sample in a blue and a red population at B-V = 0.29. At low redshifts (0.2 0.29 whereas at higher redshifts ~ 60% of the galaxies are bluer than B-V < 0.29. Although in low numbers, a population of early-type galaxies (or heavily obscured low redshift galaxies) is seen out to z ~ 2.Comment: 7 pages, 7 figures, online material (the gallery) available at http://www.oso.chalmers.se/~theresaw/Deep/gallery.htm

    Origin of the heavy elements in HD 140283. Measurement of europium abundance

    Full text link
    HD 140283 is a nearby (V=7.7) subgiant metal-poor star, extensively analysed in the literature. Although many spectra have been obtained for this star, none showed a signal-to-noise (S/N) ratio high enough to enable a very accurate derivation of abundances from weak lines. The detection of europium proves that the neutron-capture elements in this star originate in the r-process, and not in the s-process, as recently claimed in the literature. Based on the OSMARCS 1D LTE atmospheric model and with a consistent approach based on the spectrum synthesis code Turbospectrum, we measured the europium lines at 4129 {\AA} and 4205 {\AA}, taking into account the hyperfine structure of the transitions. The spectrum, obtained with a long exposure time of seven hours at the Canada-France-Hawaii Telescope (CFHT), has a resolving power of 81000 and a S/N ratio of 800 at 4100 {\AA}. We were able to determine the abundance A(Eu)=-2.35 dex, compatible with the value predicted for the europium from the r-process. The abundance ratio [Eu/Ba]=+0.58 dex agrees with the trend observed in metal-poor stars and is also compatible with a strong r-process contribution to the origin of the neutron-capture elements in HD 140283.Comment: 10 pages, 7 figures. To be published in A\&
    • …
    corecore