80 research outputs found
Automation of the matrix element reweighting method
Matrix element reweighting is a powerful experimental technique widely
employed to maximize the amount of information that can be extracted from a
collider data set. We present a procedure that allows to automatically evaluate
the weights for any process of interest in the standard model and beyond. Given
the initial, intermediate and final state particles, and the transfer functions
for the final physics objects, such as leptons, jets, missing transverse
energy, our algorithm creates a phase-space mapping designed to efficiently
perform the integration of the squared matrix element and the transfer
functions. The implementation builds up on MadGraph, it is completely
automatized and publicly available. A few sample applications are presented
that show the capabilities of the code and illustrate the possibilities for new
studies that such an approach opens up.Comment: 41 pages, 21 figure
Higgs pair production at the LHC with NLO and parton-shower effects
We present predictions for the SM-Higgs-pair production channels of relevance
at the LHC: gluon-gluon fusion, VBF, and top-pair, W, Z and single-top
associated production. All these results are at the NLO accuracy in QCD, and
matched to parton showers by means of the MC@NLO method; hence, they are fully
differential. With the exception of the gluon-gluon fusion process, for which a
special treatment is needed in order to improve upon the infinite-top-mass
limit, our predictions are obtained in a fully automatic way within the
publicly available MadGraph5_aMC@NLO framework. We show that for all channels
in general, and for gluon-gluon fusion and top-pair associated production in
particular, NLO corrections reduce the theoretical uncertainties, and are
needed in order to arrive at reliable predictions for total rates as well as
for distributions.Comment: 11 pages, 7 figures, version accepted for publication on PL
The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations
We discuss the theoretical bases that underpin the automation of the
computations of tree-level and next-to-leading order cross sections, of their
matching to parton shower simulations, and of the merging of matched samples
that differ by light-parton multiplicities. We present a computer program,
MadGraph5_aMC@NLO, capable of handling all these computations -- parton-level
fixed order, shower-matched, merged -- in a unified framework whose defining
features are flexibility, high level of parallelisation, and human intervention
limited to input physics quantities. We demonstrate the potential of the
program by presenting selected phenomenological applications relevant to the
LHC and to a 1-TeV collider. While next-to-leading order results are
restricted to QCD corrections to SM processes in the first public version, we
show that from the user viewpoint no changes have to be expected in the case of
corrections due to any given renormalisable Lagrangian, and that the
implementation of these are well under way.Comment: 158 pages, 27 figures; a few references have been adde
Wet-Chemical Synthesis of 3D Stacked Thin Film Metal-Oxides for All-Solid-State Li-Ion Batteries.
By ultrasonic spray deposition of precursors, conformal deposition on 3D surfaces of tungsten oxide (WO₃) negative electrode and amorphous lithium lanthanum titanium oxide (LLT) solid-electrolyte has been achieved as well as an all-solid-state half-cell. Electrochemical activity was achieved of the WO₃ layers, annealed at temperatures of 500 °C. Galvanostatic measurements show a volumetric capacity (415 mAh·cm-3) of the deposited electrode material. In addition, electrochemical activity was shown for half-cells, created by coating WO₃ with LLT as the solid-state electrolyte. The electron blocking properties of the LLT solid-electrolyte was shown by ferrocene reduction. 3D depositions were done on various micro-sized Si template structures, showing fully covering coatings of both WO₃ and LLT. Finally, the thermal budget required for WO₃ layer deposition was minimized, which enabled attaining active WO₃ on 3D TiN/Si micro-cylinders. A 2.6-fold capacity increase for the 3D-structured WO₃ was shown, with the same current density per coated area
Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report
This Report summarizes the proceedings of the 2013 Les Houches workshop on
Physics at TeV Colliders. Session 1 dealt primarily with (1) the techniques for
calculating standard model multi-leg NLO and NNLO QCD and NLO EW cross sections
and (2) the comparison of those cross sections with LHC data from Run 1, and
projections for future measurements in Run 2.Comment: Proceedings of the Standard Model Working Group of the 2013 Les
Houches Workshop, Physics at TeV Colliders, Les houches 3-21 June 2013. 200
page
MadGraph 5 : Going Beyond
MadGraph 5 is the new version of the MadGraph matrix element generator,
written in the Python programming language. It implements a number of new,
efficient algorithms that provide improved performance and functionality in all
aspects of the program. It features a new user interface, several new output
formats including C++ process libraries for Pythia 8, and full compatibility
with FeynRules for new physics models implementation, allowing for event
generation for any model that can be written in the form of a Lagrangian.
MadGraph 5 builds on the same philosophy as the previous versions, and its
design allows it to be used as a collaborative platform where theoretical,
phenomenological and simulation projects can be developed and then distributed
to the high-energy community. We describe the ideas and the most important
developments of the code and illustrate its capabilities through a few simple
phenomenological examples.Comment: 37 pages, 5 figures, 7 table
- …